

Ada User Journal Volume 40, Number 3, September 2019

ADA
USER
JOURNAL

Volume 40

Number 3

September 2019

Contents
Page

Editorial Policy for Ada User Journal 130

Editorial 131

Quarterly News Digest 132

Conference Calendar 143

Forthcoming Events 149

Special Contribution

 J. Cousins
“ARG Work in Progress III” 153

Ada-Europe 2019 Industrial Presentations

 A. R. Mosteo
“RCLAda, or Bringing Ada to the Robotic Operating System” 159

Proceedings of the "Workshop on Challenges and New Approaches for Dependable and
 Cyber-Physical Systems Engineering" of Ada-Europe 2019

 M. Schranz, M. Sende, A. Bagnato, E. Brosse, A. Eckel
“Modeling CPS Swarms: An Automotive Use Case” 165

 M. Schranz, M. Sende, A. Bagnato, E. Brosse
“Modeling Swarm Intelligence Algorithms for CPS Swarms” 169

Ada-Europe 2019 Speaker's Corner

 J. P. Rosen
“Experience in 40 Years of Teaching Ada” 179

Article

 M. Gajdzica
“Ada-Europe 2019 – Newcomer Experience” 183

Ada-Europe Associate Members (National Ada Organizations) 186

Ada-Europe Sponsors Inside Back Cover

130

Volume 40, Number 3, September 2019 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 131

Ada User Journal Volume 40, Number 3, September 2019

Editorial

I must start this editorial by presenting myself, as the new Editor-in-Chief of the Ada User Journal. I’m Associate Professor at
the Department of Informatics of the University of Lisbon Faculty of Sciences, and a member of the LASIGE Research Unit,
where I lead the research line on Cyber-Physical Systems. My involvement in the Ada community is quite recent, despite my
first contact with the language itself being dated back to 1998, when I was teaching Ada 95 to undergraduate students. Last
year I organized and was the Program Chair for the 2018 Ada-Europe Conference in Lisbon, which gave me the opportunity
to realise how vast is the community, to learn about the many past and ongoing projects with strong Industry involvement in
which reliable software technologies and Ada in particular are being used, and to witness the strong involvement of
companies and entities working to promote and evolve the language. After the conference I was kindly invited to follow the
activities of the Ada-Europe Board and eventually was proposed and elected as one of its members, earlier this year. Almost
without noticing, I became involved!

Self-presentation done, my first words are of appreciation to Luís Miguel Pinho, who served as Editor-in-Chief of the Ada
User Journal for 12 years and is now passing me the token. The great work he did, along with the Ada User Journal editorial
team, to provide us 48 high-quality issues, sets a huge challenge and responsibility that I’m well aware, an obligation to
pursue that work and keep the Journal high-quality standards to which the readers have been made used to. My promise is to
do my best, looking for ways to improve or renovate the Journal contents and presentation, aiming to satisfy the Journal
reader. For this task I’m fortunate to count with the help of knowledgeable, competent and committed people: Patricia López
Martínez, Jorge Real, Dirk Craeynest, Kristoffer Nyborg Gregertsen and Alejandro R. Mosteo. And the experienced advice of
Miguel, who will continue to serve the Ada User Journal as Associate Editor, is reassuring.

Regarding the contents of this issue, we start with an article that reports on the work of the Ada Rapporteur Group (ARG),
written by Jeff Cousins, member and former chair of the ARG. Being the third article in the series, it presents a further update
of the forthcoming revision of the Ada language, Ada 2020, following previous articles published in March 2017 and one
year ago.

We continue the publication of the proceedings of the industrial track of the 2019 Ada-Europe Conference, this time with a
single article, by Alejandro R. Mosteo. The article is about bringing the Ada language to the Robot Operating System (ROS)
through the provision of RCLAda, which consists of an API and accompanying tools.

Then we start the publication of the proceedings of the workshop on Challenges and New Approaches for Dependable and
Cyber-Physical System Engineering (DeCPS 2019), which was co-located with the 2019 Ada-Europe conference. The reader
will find two papers, both related to modelling swarm behaviour in Cyber-Physical Systems. The first one focuses on the
application of existing models to an automotive use case and the second proposes an approach to model the local behaviour
of individual CPSs using swarm intelligence algorithms.

Finally, the issue includes two articles that directly derive from the 2019 Ada-Europe conference. During the conference,
Jean-Pierre Rosen gave a talk on his Experience in 40 Years of Teaching Ada, in a special session named “The speaker’s
corner”. This talk originated a paper that we now have the pleasure to publish. We also publish a paper that, interestingly, and
in contrast, provides the perspective of a newcomer to the Ada-Europe conference. It is authored by Maciej Gajdzica, who,
being a first-time attendant, shares his impressions on several aspects of the conference, from the venue to the talks in the
technical and vendor sessions.

Last but not the least, this issue includes the usual News Digest and Calendar sections, prepared by their respective editors,
Alejandro R. Mosteo and Dirk Craeynest.

 Antonio Casimiro
Lisboa

September 2019
 Email: AUJ_Editor@Ada-Europe.org

132

Volume 40, Number 3, September 2019 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Ada-related Organizations 132
Ada-related Events 132
Ada-related Resources 133
Ada-related Tools 134
Ada-related Products 136
Ada and Operating Systems 137
Ada and other Languages 138
Ada Practice 139

Ada-related
Organizations

Additional Comment Period
for Upcoming Ada Revision

From: "Randy Brukardt"
<randy@rrsoftware.com>

Subject: Additional Comment Period for
Upcoming Ada Revision

Date: Fri, 26 Jul 2019 21:53:30 -0500
Newsgroups: comp.lang.ada

ISO/IEC JTC 1/SC 22/WG 9 (WG 9) is
responsible for the maintenance and
revision of the Ada Programming
Language and associated standards and
technical reports. As part of the language
maintenance activity, WG 9 has
established a group of Ada experts as the
Ada Rapporteur Group (ARG). The ARG
receives input from the Ada community at
large to consider for inclusion in revision
to the Ada programming language
standard. The WG 9 has produced a
number of revisions to the language in
accordance with ISO policy and to
address the evolution of technology (Ada
83, Ada 95, Ada 2005 and Ada 2012).

Presently, the ARG is nearing completion
on a revision to Ada 2012 (known for
now as Ada 202x) which includes new
contracts and lightweight parallelism
features. Concern has been raised that
these new proposals have not been
prototyped nor has the suitability for
diverse target environments been
assessed.

Therefore, the ARG is seeking comments,
based on prototyping and review, on the
new features (focused on the parallelism
features) incorporated within the current
draft of the Ada 202X standard.
Comments should be submitted to ada-
comment@ada-auth.org as described in

the Ada Reference Manual Introduction
(http://www.ada-auth.org/standards/
rm12_w_tc1/html/RM-0-3.html#p58).
Please include the draft number with any
Ada Reference Manual references in your
comment. Comments should be sent by 1
June 2020 in order to be considered for
the revision. (Note: While not required,
joining the mailing list as described at
http://www.ada-auth.org/comment.html is
recommended so that you receive any
queries on or responses to your
comment.)

The draft revision can be found at
http://www.ada-auth.org/standards/
ada2x.html.

A list of issues addressed in Ada 202x can
be found at http://www.ada-auth.org/
ai-files/grab_bag/
2020-Amendments.html.

(You can find an on-line version of this
announcement at https://www.adaic.org/
2019/07/additional-comment-period-for-
upcoming-ada-revision/.)

From: "Randy Brukardt"
<randy@rrsoftware.com>
Date: Fri, 26 Jul 2019 22:02:39 -0500n

To translate this announcement into plain
English, the completion date of Ada 202x
has been pushed back a year and a half in
order to get more feedback on the
proposed changes. Most of the major
features went from rough outlines last fall
to a completed standard with detailed
wording by May. This rate of completion
was just too much for most interested
parties outside of the ARG to keep up
with.

Rather than standardize something under-
baked that might have to be changed in a
few years, we're dialing back the amount
of work and letting the Ada community
catch up.

This comment period is not intended to
introduce additional new features; such
comments are always welcome but most
will be deferred until the following
revision. (Of course, additional features
related to the ones already intended for
the revision are possible.)

From: “Yannick Moy”
<moy@adacore.com>
Date: Mon, 29 Jul 2019 02:44:22 -0700

I would add that participation in the new
Ada/SPARK RFC website hosted by
AdaCore is very welcome for anyone who

wants to influence the future of Ada
and/or SPARK:

https://github.com/AdaCore/
ada-spark-rfcs

Participation can come in many flavors:

- signal your opinion on Pull Requests
(PR) by adding a thumb-up/thumb-down
on the first message of the PR

- comment on a PR to refine your opinion

- propose an RFC as a PR for others to
comment

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event, feel free to
inform us as soon as possible. If you
attended one such event, please consider
writing a small report for the Ada User
Journal.]

Ada-Europe 2019 Final Call
for Participation

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Subject: Press Release - Reliable Software
Technologies, Ada-Europe 2019

Date: Tue, 4 Jun 2019 22:21:31 -0000
Newsgroups: comp.lang.ada

--
FINAL Call for Participation

*** UPDATED Program Summary ***

24th International Conference on

Reliable Software Technologies - Ada-
Europe 2019

11-14 June 2019, Warsaw, Poland

http://www.ada-europe.org/
conference2019

**Check out tutorials and workshop! **

http://www.ada-europe.org/
conference2019/tutorials.html

http://www.ada-europe.org/
conference2019/workshops.html

*** Exhibition Opening & Welcome
Aperitif on Tuesday ***

*** Full Program available on conference
web site ***

*** Register now! ***

--

Ada-related Resources 133

Ada User Journal Volume 40, Number 3, September 2019

Press release:

24th Ada-Europe Conference on Reliable
Software Technologies

International experts meet in Warsaw

Warsaw, Poland (5 June 2019) - Ada-
Europe together with EDC (the
Engineering Design Center, a partnership
of General Electric and the Institute of
Aviation), organize from 11 to 14 June
2019 the "24th International Conference
on Reliable Software Technologies - Ada-
Europe 2019" in Warsaw, Poland. The
event is in cooperation with the Ada
Resource Association (ARA), and with
ACM's Special Interest Groups on Ada
(SIGAda), on Embedded Systems
(SIGBED) and on Programming
Languages (SIGPLAN).

[...]

This year's conference offers tutorials and
a workshop, two keynotes, a technical
program of refereed papers and industrial
presentations, an industrial exhibition and
vendor presentations, and a social
program.

Two tutorials are scheduled on Tuesday,
targeting different audiences: "An
Introduction to Ada", for those who want
to understand the benefits of using Ada;
and "Controlling I/O Devices with Ada,
using the Remote I/O Protocol", for those
willing to develop Ada programs that
control external hardware devices. On
Friday the conference hosts for the 6th
consecutive year the workshop on
"Challenges and new Approaches for
Dependable and Cyber-Physical Systems
Engineering" (DeCPS 2019): registration
is complementary for conference
participants.

The industrial exhibition opens Tuesday
mid-afternoon in the networking area and
runs until the end of Thursday afternoon.
Exhibitors include AdaCore, PTC
Developer Tools, Rapita Systems, Vector,
and Ada-Europe. All tutorial and
conference participants are invited to the
exhibition opening, as well as to the
Welcome Aperitif afterwards.

Two eminent keynote speakers have been
invited to open each day of the core
conference program: Michael Klemm
(OpenMP, Germany), on "OpenMP API:
A Story about Threads, Tasks and
Devices"; and Tucker Taft (AdaCore,
USA), on "A 2020 View of Ada".

The technical program on Wednesday and
Thursday presents 9 refereed technical
papers and 8 industrial presentations in
sessions on Assurance Issues in Critical
Systems, Tooling Aid for Verification,
Best Practices for Critical Applications,
Uses of Ada in Challenging
Environments, Verification Challenges,
and Real-Time Systems. Also included is
a speaker's corner on "Experience from 40
years of teaching Ada", and vendor
presentations. Peer-reviewed papers will

be published in an open-access journal,
industrial presentations and tutorial
abstracts in the Ada User Journal, the
quarterly magazine of Ada-Europe.

The social program includes on Tuesday
evening a Welcome Aperitif on the
terrace of the Institute of Aviation,
enjoying a wonderful view of the Warsaw
airport and city center, accompanied by
drinks and typical Polish snacks. On
Wednesday evening will be the traditional
Ada-Europe Conference Banquet, with
Polish cuisine, drinks, and live piano
music, in the restaurant "Przepis na
kompot" in the town where Chopin was
born.

The Best Paper Award will be presented
during the Conference Banquet, the Best
Presentation Award during the Closing
session.

The full program is available on the
conference web site. [...]

Latest updates:

The 12-page "Final Program" is available
at http://www.ada-europe.org/
conference2019/
AE-2019-Final-Program.pdf

Check out the tutorials in the PDF
program, or in the schedule at
http://www.ada-europe.org/
conference2019/tutorials.html.

[...]

A printed Conference Booklet with
abstracts of all technical papers and
industrial presentations will be included
in every conference handout.

Help promote the conference by
advertising for it:

http://www.ada-europe.org/
conference2019/promotion.html

Put up the poster at

http://www.ada-europe.org/
conference2019/picts/AE2019_poster.pdf

Recommended Twitter hashtags:
#AdaEurope and/or #AdaEurope2019.

For more info and latest updates see the
conference web site at
http://www.ada-europe.org/
conference2019.

Update about Ada-Europe
Conferences 2019 and 2020

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Subject: Update about Ada-Europe
Conferences 2019 and 2020

Date: Sat, 29 Jun 2019 13:53:33 -0000
Newsgroups: comp.lang.ada

The 24th edition of Ada-Europe's
International Conference on Reliable
Software Technologies took place on 11-
14 June in Warsaw, Poland, with
considerable success.

The conference, graciously hosted by the
Institute of Aviation, had nearly 100
participants, enjoyed a rich technical and
social program, and saw much active
interaction between participants,
presenters, and exhibitors.

For your information, the following
material is now available online:

- the "Conference Booklet" in PDF, which
contains the abstracts of all presentations
in the core program (see first section on
[1]);

- copies of conference presentations (see
"Download" links in "Conference Core
Schedule" table on [1]);

- copies of DeCPS workshop
presentations (see "Download links in
"Program" table on [2]);

- pictures of the exhibition booths (see
final part of [3]).

[1] www.ada-europe.org/
conference2019/overview.html

[2] www.ada-europe.org
/conference2019/workshops.html

[3] www.ada-europe.org/
conference2019/sponsors.html

As announced in Warsaw, next year's
conference will be held in Santander,
Spain, in the week of 8-12 June 2020.

The preliminary Call for Contributions is
already available on the (mini) conference
web site at [4]. More details will follow
later.

[4] www.ada-europe.org/
conference2020/

On this occasion, the Ada-Europe Board
announces a slight update of the name of
its conference series:

- the complete name is "25th Ada-Europe
International Conference on Reliable
Software Technologies";

- the short name is "Ada-Europe
Conference 2020";

- the acronym is "AEiC 2020".

Hence on social media when referring to
the Ada-Europe organization we'll use
#AdaEurope, and when referring to next
year's Ada-Europe Conference we'll use
#AEiC2020.

Ada-related Resources

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: 2019/Aug/06
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn: 2_848 (+35) members [1]

- Reddit: 2_307 (+64) members [2]

- StackOverflow: 1_685 questions [3]

134 Ada-related Tools

Volume 40, Number 3, September 2019 Ada User Journal

- Freenode: 76 (-11) users [4]

- Gitter: 42 (=) people [5]

- Telegram: 45 (-2) users [6]

- Twitter: 32 (+26) tweeters [7]

 36 unique tweets [7]

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/

tagged/ada

[4] #Ada on irc.freenode.net

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: 2019/Aug/06
To: Ada User Journal readership

GitHub: 573 (-30) developers [1]

Rosetta Code: 666 (+2) examples [2]

 36 (=) developers [3]

Sourceforge: 270 (=) projects [4]

Open Hub: 209 (=) projects [5]

Bitbucket: 87 (=) repositories [6]

Codelabs: 47 (+1) repositories [7]

AdaForge: 8 (=) repositories [8]

[1] https://github.com/search?
q=language%3AAda&type=Users

[2] http://rosettacode.org/wiki/
Category:Ada

[3] http://rosettacode.org/wiki/
Category:Ada_User

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://bitbucket.org/repo/all?
name=ada&language=ada

[7] https://git.codelabs.ch/?
a=project_index

[8] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: Thu May 23 2019
To: Ada User Journal readership

Note: positive ranking changes means to
go down in the ranking.

- TIOBE Index: 37 (+1) 0.296%
(-0.03%) [1]

- IEEE Spectrum (general): 42 (-4) [2]

- IEEE Spectrum (embedded): 13 (=) [2]

[1] https://www.tiobe.com/tiobe-index/

[2] https://spectrum.ieee.org/static
/interactive-the-top-programming-
languages-2018

Ada-related Tools

Pure Ada libraries for
Artificial Intelligence

From: Daniel
<danielnorberto@gmail.com>

Subject: Artificial Intelligence libraries in
Ada

Date: Wed, 10 Jul 2019 00:25:48 -0700
Newsgroups: comp.lang.ada

Does anybody knows pure Ada libraries
for AI?

Specially, I'm interested in Decission
Trees, but I can't find anything on
internet.

In case of a negative answer, does
anybody knows a good CPU performance
AI C/C++ Library working good binded
to Ada code?

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Wed, 10 Jul 2019 09:39:39 +0200

There is FannAda
(https://sourceforge.net/projects/lfa/), a
binding to the Fann neural network
library. No idea what it's worth.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>
Date: Wed, 10 Jul 2019 12:52:40 +0200

http://www.dmitry-kazakov.de/ada/
fuzzy_ml.htm

This includes decision trees both fuzzy
and crisp. It is 100% Ada, except the
database persistence back ends.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Wed, 10 Jul 2019 18:13:14 +0200

I guess you're not interested in neural
networks, but there's an implementation
of REM NNs in the PragmAda Reusable
components.

https://github.com/jrcarter/PragmARC

[...] It's NNs with the REM 2nd-order
learning algorithm.

http://pragmada.x10hosting.com/
REM_Eq.pdf

Gnu Emacs Ada mode 6.1.1

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Gnu Emacs Ada mode 6.1.1
released.

Date: Fri, 12 Jul 2019 11:10:22 -0700
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode 6.1.1 is now
available in GNU ELPA. This is a minor
feature and bug fix release; partial file
parsing is now supported for `which-
function-mode', and error correction is
improved. See the NEWS files in
~/.emacs.d/elpa/ada-mode-6.1.1 and wisi-
2.1.1, or at http://www.nongnu.org/ada-
mode/, for more details.

The process parser requires a manual
compile step, after the normal list-
packages installation:

cd ~/.emacs.d/elpa/ada-mode-6.1.1

./build.sh

This requires AdaCore gnatcoll packages
which you may not have installed; see
ada-mode.info Installation for help in
installing them.

dcf-ada 2.0.0 Library for
Document Container Files

From: onox <denkpadje@gmail.com>
Subject: ANN: dcf-ada 2.0.0 -- A library for

document container files, a Zip-based
archive format

Date: Tue, 23 Jul 2019 14:15:03 -0700
Newsgroups: comp.lang.ada

An Ada 2012 library for document
container files, a Zip-based archive format
standardized in ISO/IEC 21320-1:2015.
Document container files are Zip files
with several restrictions:

* Only "store" (uncompressed) and
"deflate" compression methods are
allowed

* Archives may not be encrypted or
contain digital signatures

* Archives may not span multiple
volumes or be segmented

This library is based on the Zip-Ada
library, with extensive modifications:

* Binary and Windows-specific files have
been removed with The BFG Repo
Cleaner

* Reformatted code to Ada default style
guide

* Removed obsolescent features and
implementation-defined extensions

* All packages except one that uses
Ada.Calendar are preelaborated

* Removed features prohibited by ISO
standard

* Removed lots of duplicated code and
simplified the API, reducing SLOC from
12k to 4.5k

Although the tools can (un)zip basic .zip
files, the purpose of the library is to be
able to read container files, including a
future binary storage format for 3D
meshes.

See the README.md at
https://github.com/onox/dcf-ada on how
to list or extract files from an archive.

Ada-related Tools 135

Ada User Journal Volume 40, Number 3, September 2019

Qt5Ada 5.13.0

From: leonid.dulman@gmail.com
Subject: Announce : Announce : Qt5Ada

version 5.13.0 (594 packages) release
01/07/2019 free edition

Date: Sat, 3 Aug 2019 05:09:13 -0700
Newsgroups: comp.lang.ada

Qt5Ada is Ada-2012 port to Qt5
framework (based on Qt 5.13.0 open
source final)

Qt5ada version 5.13.0 open source and
qt5c.dll(win64),libqt5c.so(x64) built with
Microsoft Visual Studio 2017 x64 in
Windows, gcc x86-64 in Linux.

Package tested with gnat gpl 2012 Ada
compiler in Windows 64bit, Linux x86-64
Debian 9.4.

It supports GUI, SQL, Multimedia, Web,
Network, Touch devices, Sensors,
Bluetooth, Navigation and many others
thinks.

My configuration script to build Qt 5.13.0
is: configure -opensource -release -
nomake tests -opengl dynamic -qt-zlib -
qt-libpng -qt-libjpeg -openssl-linked
OPENSSL_LIBS="-lssleay32 -llibeay32"
-plugin-sql-mysql -plugin-sql-odbc -
plugin-sql-oci -icu -prefix "e:/Qt/5.13"

As a role Ada is used in embedded
systems, but with QTADA(+VTKADA)
you can build any desktop applications
with powerful 2D/3D rendering and
imaging (games, animations, emulations)
GUI, Database connection, server/client,
Internet browsing , Modbus control and
many others thinks.

Qt5Ada and VTKAda for Windows,
Linux (Unix) is available from
https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio/

The full list of released classes is in "Qt5
classes to Qt5Ada packages relation
table.docx"

VTKAda version 8.2.0 is based on VTK
8.2.0 (OpenGL2) is fully compatible with
Qt5Ada 5.13.0.

Qt5AVAda

From: leonid.dulman@gmail.com
Subject: Announce : QtAVAda version

1.12.0 release 01/08/2019 free edition
Date: Sat, 3 Aug 2019 05:09:13 -0700
Newsgroups: comp.lang.ada

Qt5AVAda is ada-2012 port to QtAV
multimedia playback framework based on
Qt + FFmpeg. Cross platform. High
performace. Easy to use and base on
QtAV 1.12 developed by wang-bin
https://github.com/wang-bin/QtAV.

QtAVAda build widgets inside Qt5Ada
application(5.13.1 release 01/08/2019).

QtAVAda for Windows, Linux (Unix) is
available from
https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio

If you have any problems or questions,
tell me know.

String edit v3.5

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: ANN: String edit v3.5 released
Date: Sun, 4 Aug 2019 16:56:40 +0200
Newsgroups: comp.lang.ada

The library provides various means for
editing and formatting strings:

http://www.dmitry-kazakov.de/ada/
strings_edit.htm

This release adds implementations of
some standards actively used in
communication RFC 3061, 4514; ISO
8601.

Changes to the previous version:

- Added the package
Strings_Edit.Long_Floats, an instance of
String_Edit.Floats with Long_Float;

- The package
Strings_Edit.UTF8.ITU_T61 provides
ITU T.61 encoding conversions;

- The package
Strings_Edit.Object_Identifiers provides
implementation of RFC 3061 object
identifiers (OID);

- The package
Strings_Edit.Distinguished_Names
provides implementation of RFC 4514
distinguished names (DN);

- The package Strings_Edit.ISO_8601
provides ISO 8601 representations of
time and duration;

- Encoding and decoding Base64 streams
were added to the package
Strings_Edit.Base64.

Simple Components for Ada
v4.41

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple components for Ada
v4.41 released

Date: Mon, 5 Aug 2019 13:57:16 +0200
Newsgroups: comp.lang.ada

The new release is focused on ASN.1
support. The implementation does not
require ASN.1 compiler. It is based on
reflection of Ada attributes. The objects
corresponding to ASN.1 objects are put
together into record types and the
encoding is deduced from the placement.
The implementation provides arena pool
to allocate data associated with ASN.1
objects. This allows to handle very large
and indefinite ASN.1 objects without
allocating maximum possible memory in
advance. This also enables sharing
memory between ASN.1 CHOICE
alternatives as well as recursively defined
ASN.1 objects. Implementations of LDAP
and X.509 certificates based on ASN.1
are provided.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- The package OpenSSL was extended;

- Added implementation of ASN.1
encoding;

- X.509 ASN.1 certificates
implementation added;

- LDAP implementation added.

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 5 Aug 2019 07:22:43 -0700

Wow!

This is incredible news, especially for
things like the Wasabee browser project.

There was someone who was working on
an Ada/SPARK ASN.1 compiler (Peter
Chapin?) and I think the people doing this
project -- https://github.com/ttsiodras/
asn1scc -- which *is* an ASN.1 compiler.

WRT the OpenSSL dependency, how
much work would it be to get rid of it?

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Mon, 5 Aug 2019 17:56:43 +0200

> Wow!

> This is incredible news, especially for
things like the Wasabee browser
project. There was someone who was
working on an Ada/SPARK ASN.1
compiler (Peter Chapin?) and I think
the people doing this project [...]

I am aware of ASN1SCC, but I wanted an
alternative approach that does not require
code generator and can handle constraints
dynamically.

ASN.1 specifications are infested with
objects defined up to "MAX" items. E.g.
the LDAP filter is a variable record
(CHOICE) with disjunctive and
conjunctive forms as alternatives
containing the LDAP filter recursively as
terms. The number of terms is an
unspecified MAX and the depth of
recursion is kind of infinite. I have no
idea how the generators handle this mess.
If compiled literally, e.g. with MAX=256
depth=32, it would take a huge amount of
memory while in reality it is bounded
from above just by the message length.

> WRT the OpenSSL dependency, how
much work would it be to get rid of it?

There is no dependency on OpenSSL.

OpenSSL and GNUTLS are two back-
ends used in the corresponding
implementations of the secure connection
handler. Both are separate gpr-projects.

All network stacks are designed to work
with any handler implementation. Should
Ada TLS become available I would use it
in yet another implementation of.

136 Ada-related Products

Volume 40, Number 3, September 2019 Ada User Journal

Ada-related Products

Embedded Boards for Ada

From: Ricardo Brandão
<rbrandao.br@gmail.com>

Subject: Which embedded devices do you
use?

Date: Tue, 4 Jun 2019 08:01:50 -0700
Newsgroups: comp.lang.ada

I worked with embedded systems for a
long time.

I started with Z-World devices on late
80's. And now I'm working mainly with
ESP32 boards.

I'm learning Ada and I'd like to use it on
my new projects. So, I'd like to know
what boards/processors you guys are
using.

Normally, my projects need Digital IOs,
Analog Inputs, and any way to wireless
communication: Bluetooth, BLE, WiFi...

And I'm used to work with I2C devices as
well (OLED displays, sensors, RTC, and
so on).

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Tue, 4 Jun 2019 17:14:33 +0200

On 2019-06-04 17:01, Ricardo Brandão
wrote:

> So, I'd like to know what
boards/processors you guys are using.

ARM-based boards with a Linux on it.

> Normally, my projects need Digital IOs,
Analog Inputs, and any way to wireless
communication: Bluetooth, BLE,
WiFi...

For quality analogue I/O we are using
EitherCAT or ModBus terminals. For
digital I/O on board GPIO could serve but
usually it is terminals as well. CAN and
Serial is used too.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Tue, 4 Jun 2019 17:56:39 +0200

On 2019-06-04 17:26, Ricardo Brandão
wrote:

> So, it could be a good idea use
Beaglebone as a start point?

Yes. We are using BB a lot, for
prototyping etc.

From: Optikos <optikos@verizon.net>
Date: Tue, 4 Jun 2019 08:55:21 -0700

I like Marvell's ESPRESSObin board, as
distributed in the USA by Globalscale
Technologies (shipped direct from
PRChina).

http://ESPRESSObin.net

With an Armada 3720 SOC, it is capable
of doing some serious telecom/datacom
high-speed packet processing with some
hardware assist (instead of slow software-
processor speed) on its 2 LAN and 1

WAN Ethernet ports. (Of course better
would be the 7000 or 8000 series
Armadas which have full-fledged SR-IOV
on their SOC, but hey there is always
room for improvement in the future.)

There is also the ESPRESSObin's baby
brother (with fewer Ethernet ports): the
new Sheeva64 in wall-wart form-factor,
continuing the venerable SheevaPlug
family.

https://www.GlobalscaleTechnologies.
com/p-86-sheeva64.aspx

What is nice about the ESPRESSObin and
Sheeva is that they are embrace Yocto-
Project Linux, so you are not tied to any
one Linux distro. Instead, Yocto Project
requires that you roll your own Linux
distro from near-scratch (e.g., mimicking
whichever distro or bleeding edge
referent* that you prefer).

* e.g., Linus Torvalds' git repository

https://www.YoctoProject.org

Each ARM hobbyist SBC community has
a different specialty. I wouldn't do high-
packet-rate telecom/datacom processing
on a Raspberry Pi, for example. That is
what the Marvell Armada line is better
suited for.

Btw, Marvell's Armada series is the
descendent whose ancestors include the
DEC StrongARM and the Intel XScale, so
in some ways this is one of the “main
trunks” in the ARM-processor
community, especially for industrial
usage–not some twig on a branch.

https://www.TheRegister.co.uk/2006/
06/27/intel_sells_xscale

Plus, Marvell's MoChi (modular chip
multi-die SOCs) technology (•not• in the
Armada 3720) is one of the industry
leaders in DARPA's MoChi endeavors in
recent years. DARPA is trying to seed
some of the major SOC processor
manufacturers with MoChi. Getting on
board with Marvell now likely prepares
you for the aggressive MoChi future as
the 1st-generation-MoChi 7000 and 8000
series eventually migrates into the
hobbyist SBCs, and then aggressive-
MoChi successors follow after that in
coming years.

https://www.marvell.com/architecture/
mochi

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Tue, 4 Jun 2019 11:51:10 -0700

You can dig here:

- https://github.com/ohenley/awesome-
ada#Runtimes (the bb-runtimes repo by
AdaCore)

- https://github.com/ohenley/awesome-
ada/blob/master/README.md#Hardwar
e-and-Embedded (The main repo to
check is ada-drivers-library. Adacore is
behind and they are of great assistance.)

- https://github.com/ohenley/awesome-
ada/blob/master/README.md#Books
Do not forget to check the book about
embedded by Maciej Sobczak.

Hope it helps and any PR/Suggestions to
refactor the list is welcome.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Tue, 4 Jun 2019 22:14:12 +0300

The AdaCore "Make with Ada"
competition entries use a wide range of
hardware. See
https://www.hackster.io/contests/adacore/
submissions#challengeNav.

(As for myself, I've recently used Ada for
embedded systems only in space
applications, so only on made-for-space
computers, usually with SPARC
processors and a high price tag.)

From: Philip Munts
<philip.munts@gmail.com>

Date: Wed, 5 Jun 2019 01:33:09 -0700

BeagleBone (more and better I/O) and
Raspberry Pi (faster). Both running my
own embedded Linux distribution:

https://github.com/pmunts/muntsos

Debian and Raspbian are fine general
purpose operating systems, but IMHO
they are wretched for embedded systems.

Anything on mains power should be
running Linux. The networking
capabilities and development tools are
just so far beyond microcontrollers.

I'm especially fond of the PocketBeagle
and the Raspberry Pi Zero Wireless.
Running Ada programs, of course.

Janus/Ada 3.2.1

From: "Randy Brukardt"
<randy@rrsoftware.com>

Subject: Janus/Ada 3.2.1 Released!
Date: Wed, 26 Jun 2019 00:12:16 -0500
Newsgroups: comp.lang.ada

A new version of Janus/Ada has finally
made it to release. This version includes
recognition of the full Ada 2012 syntax,
null exclusions, private with, a number of
language-defined libraries from both Ada
2005 and 2012, and code quality warnings
to detect likely bugs early.

Read the full announcement at

http://www.rrsoftware.com/html/blog/
ja-321a-rel.html.

Existing customers with a current support
agreement (including those in their first
90 days of ownership) can download the
new version and use their existing key to
unlock it. For everyone else, see our
website for pricing:
http://www.rrsoftware.com/html/
companyinf/prices.htm.

Randy Brukardt.

P.S. I apologize to anyone that would
rather not see the blatant ad. I try not to

Ada and Operat ing Systems 137

Ada User Journal Volume 40, Number 3, September 2019

do this more often than once per year, and
the information ought to be relevant to
those who sometimes forget that there are
other, actively developed Ada compilers
out there.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Wed, 26 Jun 2019 08:53:02 +0200

Good news. I see that the website still
refers to the compiler as Janus/Ada 95.
How much additional work is needed
before you have a full Ada-12 compiler?

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Wed, 26 Jun 2019 17:40:42 -0500

Probably more years than I have left on
the planet. While I've mapped out a
design for most new features, a few things
have been pretty much ignored (esp.
interfaces and real-time stuff).

If I was able to find a business plan that
made sense, it could get done faster, but
as it stands I don't expect to ever break
even with it and as such one can't really
spend $$$ (as opposed to time) on it.

From: Optikos <optikos@verizon.net>
Date: Wed, 26 Jun 2019 08:41:54 -0700

On Wednesday, June 26, 2019 at 3:52:51
AM UTC-5, Dmitry A. Kazakov wrote:

[...]

> P.S. I hope Janus will target Linux
someday. It could be a Windows-hosted
cross. I think many would buy that
thing.

I concur, but the highest-RoI would be for
Janus/Ada to have the LLVM backend in
one fell swoop. Then we as users would
naturally get various object-file formats
(e.g., ELF, XCOFF) and ISAs (e.g.,
Apple ARM) and debug formats (e.g.,
gdb's; lldb's)—both native and cross-
compiled—inherited as a by-product,
killing multiple birds with one stone.

Randy, would putting Janus/Ada's front
end on

0) LLVM backend

be more difficult than any major target
feature listed above alone (e.g.:

1) Janus/Ada as-is without LLVM plus
ELF on x86;

2) Janus/Ada as-is without LLVM plus
PE-on-ARM for the forthcoming ARM-
based bendable/foldable Surface Phone
thingy-whatever-it-will-be-called,
deriving from Andromeda & Courier
prototypes with Composable-Shell and
Windows Core OS)?

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Wed, 26 Jun 2019 17:36:27 -0500

[Replying to the numbered list in the
previous post:]

These are almost completely orthogonal:
the existing code generator would work
for Linux, and the (old) Unix JLink did

ELF. The issue with Linux is updating the
runtime to use Linux system calls (these
are different than the ones from the old
Unix).

OTOH, attaching LLVM is a totally
different level of work, and I don't know
enough about LLVM to say how easy or
hard it would be. OTOH, we did
something similar of Unisys, so we
already have most of the ability available.

But again, note that a code generator is a
small (and usually easiest) part of porting
to a new target. Making a usable runtime
(that is, exception handling, finalization,
overflow checking, divide-by-zero traps,
basic I/O, and most of all, tasking) is
generally a bigger job.

AdaControl 1.21r3

From: "J-P. Rosen" <rosen@adalog.fr>
Subject: [Ann] AdaControl version 1.21r3

released
Date: Thu, 11 Jul 2019 14:42:04 +0200
Newsgroups: comp.lang.ada

Adalog is pleased to announce version
1.21r3 of AdaControl. There are now 71
rules, 579 subrules.

This version includes new checks to ease
the transition to Ada 2012 (like for-in
loops that can be changed to for-of loops),
improvements to the auto-fixing features,
extensions to existing rules (like use-
package that can be changed to use use-
type or use-all-type), bug fixes... See file
HISTORY for the complete list of
improvements.

The pre-compiled version uses now
GNAT Community 2019.

Available from http://www.adacontrol.fr

Enjoy!

Ada and Operating
Systems

GNAT CE 2019 and
Impending Changes on
MacOS

From: Simon Wright
<simon@pushface.org>

Subject: Re: GNAT CE 2019 macOS
Date: Thu, 30 May 2019 20:34:44 +0100
Newsgroups: comp.lang.ada

[The following post discusses an issue
with missing system libraries during
linking in MacOS, due to changes in the
operating system SDK.]

Bill Findlay
<findlaybill@blueyonder.co.uk> writes:

>> gnatlink
/Users/wf/mekhos/MacOSX/e.ali -
funwind-tables -fdata-sections -
ffunction-sections -mtune=native -fno-

stack-check -fomit-frame-pointer -flto -
O3

> ./quad_div.o -Wl,-dead_strip -Wl,-
dead_strip -flto

>

>> ld: library not found for -lSystem

>> collect2: error: ld returned 1 exit status

>> gnatmake: *** link failed.

>

> -lSystem ??

I've had a discussion about this with
AdaCore.

The problem they are addressing is that
Apple are moving towards having system
includes only in the SDKs rather than in
/usr/include; see [1], which says "As a
workaround, an extra package is provided
which will install the headers to the base
system. In a future release, this package
will no longer be provided".

"this package" is the one I reference at
[2].

AdaCore's approach is to build the
compiler with a "system root" that
references the SDK in situ; the actual link
takes place with

/usr/bin/ld -syslibroot

/Library/Developer/CommandLineTools/
Platforms/MacOSX.platform/Developer/S
DKs/MacOSX.sdk/

and, unfortunately for us, that's the full
Xcode and not the CommandLineTools
subset; so if you only have the
CommandLineTools, ld looks for
libSystem.dylib in a non-existent
directory.

One approach is to build with
-largs -Wl,-syslibroot,/

Another one is to install the full Xcode.

I guess Xcode is the way to go.

For the future

I don't think it's possible to have multiple
syslibroots.

I don't think the GCC developers would
be happy with building knowledge of
xcode-select into the compiler, so it could
make the same runtime choices as Apple
tools.

Since the SDKs really only impact the
includes, at any rate as long as you're on
macOS and not iOS, I'm wondering
whether it'd be possible to add both SDK
include paths to GCC's include paths and
avoid the syslibroot impact on libraries.

Nothing yet about this on the GCC
mailing lists, that I can see.

[1] https://developer.apple.com/
documentation/xcode_release_notes/
xcode_10_release_notes#3035624

[2] https://forward-in-code.blogspot
.com/2018/11/mojave-vs-gcc.html

138 Ada and other Languages

Volume 40, Number 3, September 2019 Ada User Journal

From: Simon Wright
<simon@pushface.org>

Date: Tue, 18 Jun 2019 18:00:52 +0100

I did something on this, written up here:

https://forward-in-code.blogspot.com/
2019/06/macos-software-development-
kit-changes.html

Ada in Genode OS

From: Kay-Uwe Genz <kug1977@web.de>
Subject: Genode OS Framework 19.05 goes

SPARK
Date: Mon, 17 Jun 2019 03:43:40 -0700
Newsgroups: comp.lang.ada

you might be interested to see, that
Genode OS Framework 19.05 is
integrating Ada/SPARK runtime and
SPARK-based cryptography

Spunky: A kernel using Ada - Part 1: RPC

For me these news were new.
https://www.osnews.com/story/130141/
ada-spark-on-genode/

From: Kay-Uwe Genz <kug1977@web.de>
Date: Wed, 19 Jun 2019 07:30:34 -0700

> I don't understand why they put c++ on
one end and SPARK on the other...
Don't they know "normal" Ada includes
quite enough "non-static" features? Or
is that compatibility with existing
libraries the problem? Not really said in
that article.

Most of the L4 development which is
where Genode OS Framwork came from
is done in C++ and Ada/SPARK is more a
hobbiest project, I guess. The Muen
kernel is focussed 100% on Ada/SPARK.

Ada and other
Languages

Specification/Body
Separation in Ada
From: John Perry <john.perry@usm.edu>
Subject: Why .ads as well as .adb?
Date: Sat, 1 Jun 2019 17:48:16 -0700
Newsgroups: comp.lang.ada

I understand that Ada, like Modula-2 and
Modula-3, and arguably like C++,
requires a definition file (.ads) as well as
an implementation file (.adb). With
Oberon, Wirth moved away from
definition files, using a symbol to indicate
which module identifiers should be
exported. (Someone else may have done
this before him; it's just that I'm most
familiar with this history.) Most
languages I'm familiar with these days do
something similar, either via
public/private or some other mechanism.

As far as I can tell, though, Ada has stuck
with the two separate files, rather than,
say, generating an .ads from an .adb with
export markup.

Is there a reason Ada hasn't moved to this
simpler structure?

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Sun, 2 Jun 2019 07:42:58 +0200

[...]

One of the main (huge) benefits of Ada is
in being able to use specifications even
before the body exists. You can:

1) write the specification, compile it to
make sure that it make sense

2) write the code that uses the
specification, to make sure that the
specification meets the needs of the
using code

3) write the body, with the assurance that
what you do is the right thing.

You can even add:

2.5) write a prototype body to check that
the behaviour is correct, before writing
the full body that meets all requirements.

[...]

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Sun, 2 Jun 2019 08:39:23 +0200

It is general design principle of separation
specifications from implementations. [...]
[It] has evident advantages for code base
maintenance, team development, testing,
separate compilation etc. BTW, you can
stuff bodies and specifications in the same
file. It is purely compiler's business. See
gnatchop for GNAT. [...]

On 2019-06-02 02:48, John Perry wrote:

> As far as I can tell, though, Ada has
stuck with the two separate files, rather
than, say, generating an .ads from an
.adb with export markup.

That is not possible. You cannot generate
specification from implementation and
conversely. In both cases there is
additional information missing. It could
be two different languages. Even in the
languages that confuse these things,
declarations have syntax different from
definitions. [...]

From: Maciej Sobczak
<see.my.homepage@gmail.com>

Date: Tue, 4 Jun 2019 01:03:26 -0700

[Written by J-P. Rosen
<rosen@adalog.fr>]

> If you have a body with many
subprograms, how can you tell which
ones are intended to be exported, and
which ones are private to the body?

By annotating them appropriately?
Keywords "private" or "export" or similar
are commonly used for this purpose.

Please note that your question could also
refer to the concept of DLLs, which is not
directly addressed by Ada (nor C++). Yet,
somehow we do manage to solve this
problem.

[...]

From: Keith Thompson <kst-u@mib.org>
Date: Mon, 03 Jun 2019 12:51:14 -0700

"Dmitry A. Kazakov" <mailbox@dmitry-
kazakov.de> writes:

> No. Specification describes a class of
implementations. You cannot deduce
class from its single member.

I suspect the point is that you *could*
have an Ada-like language in which
specifications could be unambiguously
generated from implementations. You'd
need some kind of additional annotation
to specify whether a given declaration is
to be exported.

You can't in Ada as it is, because Ada
isn't designed that way.

[Editor’s note: the following subthread
discusses the readability concerns of
separating specifications, but also that
clarity and separation may be achieved
not only via specifications.]

From: Brad Moore
<bmoore.ada@gmail.com>

Date: Fri, 7 Jun 2019 07:10:11 -0700

On Friday, June 7, 2019 at 1:59:26 AM
UTC-6, Maciej Sobczak wrote:

> 1. There *are* languages that don't use
separate spec files. Java and Python are
well known examples, representing
both compiled and scripted approaches.

[...] I think it is a big mistake of languages
that encourage the specification and
implementation to be in the same source
file, and very surprised to see that anyone
would be arguing for that.

The separation of specification and
implementation ties into the "separation
of concerns" attributed to Dijkstra way
back in 1974.

When wanting to make use of a 3rd party
package in Ada, I value being able to
generally understand how to use that
package by looking at the specification
without having to look at the
implementation. You generally only need
to look at the public part of a package
specification, as you can rely on anything
past that as being implementation details.

Even with C++, one cannot stop reading
when you see a private: keyword in a
class definition, because there can be
many public and private sections in a
class. You have to keep reading the class
specification until to hit the end of the
class specification, in case you missed
more public parts.

[...]

> 2. Programs written in those languages
do *not* need to be written in one giant
file. Actually, Java is frequently
criticized (it was even in this thread) for
forcing the programmer to use too
many (!) files. Even though it does not
have separate specs.

Maybe Ada offers a benefit here. In
languages like Java, there is a tendency to

Ada Pract ice 139

Ada User Journal Volume 40, Number 3, September 2019

want to put each class in a separate file.
With Ada packages, it can make more
sense to organize related types in the
same package.

[Editor’s note: another subthread explores
the implications for “Programming in the
large”]

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Mon, 10 Jun 2019 17:07:38 -0500

[...]

"Maciej Sobczak"
<see.my.homepage@gmail.com> wrote
[...]

> What I don't accept is the religious
attitude that Ada is the only language
that got the software engineering right
and (consequently) that everything else
is broken.

The truth hurts. So far as I can tell, no
other language has really tried to "get
software engineering right". It's possible,
of course, but everyone either is trying to
graft engineering onto some preexisting
base without it (C++, Java) or is building
something that's more about fast
construction than engineering (Python).

[...]

From: Optikos <optikos@verizon.net>
Date: Mon, 10 Jun 2019 17:32:36 -0700

There was only one other programming
language that tried to “get software
engineering right” and that achieved
significant industrial usage and an open-
source GCC compiler and that was ISO
standardized: CHILL. While DoD &
NATO were busy with their HOLWG
effort for the military, ITU-T (in the
United Nations) launched a somewhat
competing effort for telecom in the EU
(and AT&T steadfastly rejected both for
the most part except for some monitoring
of the 2 other efforts, so that AT&T
pushed forward with C).

As can be seen in the following example
CHILL source code, if Ada was
envisioned as a Pascal/Wirth-esque-
family language, CHILL was envisioned
as a PL/1esque-family language. As such,
Ada is beautiful & refined by comparison,
whereas CHILL is rather abrupt &
uncouth, as if it is most at home on an
IBM mainframe with its fellow brethren
CICS and JCL and of course PL/I. CHILL
and Ada share many of the same goals
and as such have some analogous
language features that are absent in most
other programming languages. Except for
some maintenance of CHILL-based
telecom equipment from Alcatel and
Siemens, CHILL has become a dead
language.

http://psc.informatik.uni-jena.de/
languages/chill/chill.htm

[...]

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Tue, 11 Jun 2019 17:49:24 +0200

On 6/11/19 12:07 AM, Randy Brukardt
wrote:

> So far as I can tell, no other language
has really tried to "get software
engineering right".

Precisely. It's important to remember that
separation of spec and body have been
part of Ada from the beginning, and Ada
was designed to support the way S/W
engineers think and work from the
beginning. Like many Ada features, S/W
engineers understand and like separation
of spec and body, and coders don't. For
me, much of this thread can be viewed
simply as people saying "I'm a S/W
engineer" or "I'm a coder".

From: John Perry <john.perry@usm.edu>
Date: Mon, 3 Jun 2019 06:37:43 -0700

Thanks to everyone for the replies.
Personally, I find three of them especially
compelling:

 "As a teacher, I keep fighting with
students who jump to writing bodies too
early."

[I know exactly what this is like.]

 "teams can work separated from each
other as needed, without the project
having to distribute all of the
implementation to everyone"

[Having separate specification files
against which one can *compile* would
be useful, not just convenient, though I
think it's arguable that one can do this in
Oberon, too, via .smb files and
documentation.]

 "convenience"

[not a direct quote, but several people
point to this, and until I read their
explanations I thought the convenience
ran in the other direction]

[...]

[Editor’s note: the author proposes to
follow-up with the impossibility of
generating unambiguous specifications
from bodies. If the conversation catches
up, this will be reported in the next issue.]

Issues with Fortran Calling
Convention

From: Chris M Moore
<zmower@ntlworld.com>

Subject: Making the same mistake as the
broken C interface to fortran

Date: Tue, 25 Jun 2019 00:33:39 +0100
Newsgroups: comp.lang.ada

Read this interesting article today:

https://lwn.net/SubscriberLink/791393/
41d57555202e8cdb/

Synopsis: C interfaces to Fortran makes
some assumptions about how to call
fortran ABIs (I don't need to pass the

hidden length parameter if it is a
character*1) but now Gfortran has
optimisations which assume a different
calling convention (Thou shalt pass the
hidden length).

There are work around (compile fortran
with ‑fno‑optimize‑sibling‑calls) but it
seems that the proper fix is to pass the
hidden length parameter.

I had a quick look at the LAPACK
bindings and they both seem to use Ada
characters. :/

 [Editor’s note: after some back and forth
discussion, it seems Ada may be affected
by the same issue. What follows is the last
post in the thread with an Ada
reproducer.]

From: Chris M Moore
<zmower@ntlworld.com>
Date: Sun, 7 Jul 2019 17:33:46 +0100

I spoke too soon when I said

> I'm sure GNAT does the right thing if
you're using Fortran_Character.

If I change callee.f to

 subroutine callee (c)
 character (len=*), intent (in) :: c
 print *, 'parameter c is ', c
 end

then STORAGE_ERROR is the order of
the day no matter the call used. Looking
at the assembler, this is because GNAT
does not pass the length of the string.

I compared it to fcall.f:

 program fcall
 call callee("OK")
 call callee("Oh noes")
 stop
 end

and this unsurprisingly does pass the
lengths.

I've used the webform on the Community
section of the GNAT website to provide
feedback. I've pointed out that the issue
also affects single character parameters.

Ada Practice

References vs. Access Types

From: "Alejandro R. Mosteo"
<alejandro@mosteo.com>
Subject: References vs access types
Date: Fri, 31 May 2019 17:44:34 +0200
Newsgroups: comp.lang.ada

So, part of the point of reference types is
to be able to return an item "by reference"
without being able to store the pointer:

 type Item;
 type Item_Access is access Item;

 type Reference (Ptr : access Item) is
 limited null record;
 function Get (...) return Reference; -- (1)

140 Ada Pract ice

Volume 40, Number 3, September 2019 Ada User Journal

In Gem #107 this is said as advantageous
against, for example,

 function Get (...) return Item_Access;
 -- (2)

because "access discriminants are
unchangeable. The discriminant also
cannot be copied to a variable [like
Item_Access]" [1].

Now, without thinking much about it,
while fighting old bugs, I have sometimes
replaced a problematic Reference with

 function Get (...) return access Item;
 -- (3)

And here comes the question: besides
losing the ability to use aspects on the
Reference type, or using it for some fancy
refcounting, does (3) give the same
safeties wrt to copying as (1)? Are there
any other hidden traps in (3) (assuming
the pointee thread-safety/lifetime is
properly managed)?

Or, put it another way, is (1) always
preferable? Or may (3) suffice for simple
uses?

[1] https://www.adacore.com/gems
/gem-107-preventing-deallocation-for-
reference-counted-types/

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>
Date: Fri, 31 May 2019 18:55:53 +0200

My preferences list would be:

#1 - Never, visually ugly, semantically
questionable, lacking transparent access
to the target object and technically not a
reference at all, plus unstable with
GNAT compilers.

#2 - Construction of new stand-alone
objects (frequently class-wide),
implementation-dependent stuff.

#3 - Access to a component of an existing
object.

As for hidden traps, only #3 is safe upon
inheritance, if primitive operation and
thus covariant.

From: AdaMagica
 <christ-usch.grein@t-online.de>
Date: Fri, 31 May 2019 16:55:01 -0700

I'm quite opposed to Dmitry [‘s statement
about #1].

I admit that #1 is clumsy. But see Gem
123 to learn how this syntax may be
improved with some aspects.

(Compiler problems are never an
argument to avoid some feature forever.)

From: "Randy Brukardt"
<randy@rrsoftware.com>
Date: Fri, 31 May 2019 16:33:18 -0500

(1) and (3) have the same accessibility
rules, so they have the same safety from
copying (no more and no less). However,
since (3) is returning an access type, one
can directly assign the function result into
an access type, and that will work as the
function will then have the accessibility of

the access value. (But of course, you
might get an accessibility failure inside
the function in that case.)

An important part of the reference
mechanism is the use of aliased
parameters. For a function, those are
required to have the same accessibility as
the function result. This makes most
problematic calls illegal. For instance, in:

 function Get (Obj : aliased in out
 Some_Type) return access
 Some_Other_Type;

 Ptr : Some_Access_Type;

 procedure Whatever is
 Local: Some_Type;
 begin
 Ptr := Get (Local); -- Illegal.
 Get (Local).all := ...;
 end Whatever;

The first call to Get here is illegal as the
actual parameter is more nested than the
level of the function call (which is that of
Ptr). This prevents Get from keeping a
pointer longer than the object exists. The
second call to Get is legal because the
level of that call is local, and therefore the
object lives long enough.

Create and Append_File

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>
Subject: Create and Append_File
Date: Thu, 6 Jun 2019 22:45:09 +0200
Newsgroups: comp.lang.ada

You can call Create with mode
Append_File. I'm trying to figure out
what that's supposed to do (as opposed to
what compilers do). I've read ARM A.7,
A.8.2, and A.10.2, and am still not sure.

It seems there are 2 likely interpretations:

1. Create creates a file, so this is the same
as using mode Out_File

2. Since mode Append_File was given, it
means to open the file in append mode
if it exists, or create it as for mode
Out_File if it doesn't

If 1., then why allow Append_File for
Create? A subtype excluding it could be
defined for Create.

Of course, you can also Create a file with
mode In_File, which I presume means to
create an empty file and open it for
reading, which doesn't seem very useful,
so maybe I shouldn't expect these to make
sense.

From: "Randy Brukardt"
<randy@rrsoftware.com>
Date: Thu, 6 Jun 2019 16:24:52 -0500

I believe it means the same as Out_File.
Other requirements in RM (not very clear
ones, I'm afraid) require the file opened
by Create to be empty, whether or not the
file previously existed. So, if Create
allows (re)creating an existing file (it

doesn't have to, it could raise Use_Error),
that file will be empty. In that case,
Out_File and Append_File are the same.

As you note, Create (In_File) is already
nonsense, so Create (Append_File) might
as well be nonsense as well (it's *less*
nonsense in any case, since a modeless
Reset preserves the mode, and the file
wouldn't necessarily be empty at that
point).

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>
Date: Fri, 7 Jun 2019 17:59:39 +0200

On 6/7/19 10:01 AM, Simon Wright
wrote:

> I guess I should add this to my
StackOverflow answer which may have
been the trigger for this question. I have
No Idea why I thought it sensible to
Create the file in Append_File mode.

Yes, I saw Create with Append_File and
wondered what that should do. It seemed
reasonable that it would open the file in
append mode if it existed, and create it in
output mode otherwise, but that's not what
GNAT does, so here we are.

Conventions Applied to
Entity Views

From: Jere <jhb.chat@gmail.com>
Subject: Convention Question related to
access types
Date: Thu, 6 Jun 2019 18:51:29 -0700
Newsgroups: comp.lang.ada

The RM in section B.1 talks about Ada
Standard requirements for convention
compatibility. In it however it doesn't
mention anything about private types, full
views, etc.

Say you are wanting to bind to an opaque
type in C:

 package Bindings is
 type Opaque_Type(<>) is limited
 private;
 type Binding is access Opaque_Type
 with Convention => C;

procedure Some_Procedure(
Value : Binding) with Import,
Convention => C;

 private

 type Opaque_Base is limited null
 record with Convention => C;
 type Opaque_Type is new
 Opaque_Base;

 end Bindings;

GNAT happily accepts that, but I am
unsure if that is because of the "The
implementation permits T as an L-
compatible type." part or because
Opaque_Base is a proper convention
compatible type and Opaque_Type
derives from it and is thus convention

Ada Pract ice 141

Ada User Journal Volume 40, Number 3, September 2019

compatible as well, even though it is a
private type.

I couldn't find anything dictating whether
the convention compatibility rules applied
to the full view or the public view.

From: "Randy Brukardt"
<randy@rrsoftware.com>
Date: Sat, 8 Jun 2019 00:11:08 -0500

Conventions apply to *entities*. See
6.3.1(2/1): "a convention can be specified
for an entity". Views like a partial view is
of an entity, not an entity itself. Thus
there is only a single convention for a
type. Where it is specified doesn't matter

outside of Legality Rules. Thus the rules
in B.1 only need to talk about types, not
views.

I just had this argument about "entity"
with other ARG members vis-a-vis a
different topic (I lost :-), so I'm very
certain this is correct.

 143

Ada User Journal Volume 40, Number 3, September 2019

Conference Calendar
Dirk Craeynest
KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked  is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with  denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2019
October 01-04 38th IEEE International Symposium on Reliable Distributed Systems (SRDS'2019), Lyon, France.

Topics include: distributed systems design, development and evaluation, with emphasis on reliability,
availability, safety, dependability, security, and real-time.

October 07-11 23rd International Symposium on Formal Methods (FM'2019), Porto, Portugal (aka 3rd World
Congress on Formal Methods). Topics include: formal methods in a wide range of domains including
software, computer-based systems, systems-of-systems, cyber-physical systems, human-computer
interaction, manufacturing, sustainability, energy, transport, smart cities, and healthcare; formal
methods in practice (industrial applications of formal methods, experience with formal methods in
industry, tool usage reports, ...); tools for formal methods (advances in automated verification, model
checking, and testing with formal methods, tools integration, environments for formal methods, ...);
formal methods in software and systems engineering (development processes with formal methods,
usage guidelines for formal methods, ...); etc.

October 07 8th Formal Methods for Interactive Systems Workshop (FMIS'2019). Topics
include: general design and verification methodologies which take account of human
behaviour; application areas include pervasive and ubiquitous systems, cyber-physical
systems, augmented reality, scalability and resilience, mobile devices, embedded
systems, safety-critical systems, high-reliability systems, shared control systems, digital
libraries, eGovernment, human-robot interaction.

October 07 5th Formal Integrated Development Environment Workshop (F-IDE'2019). Topics
include: F-IDE building (design and integration of languages, development of user-
friendly front-ends); how to make high-level logical and programming concepts
palatable to industrial developers; integration of Object-Oriented and modularity
features; integration of static analyzers; integration of automatic proof tools, theorem
provers and testing tools; documentation tools; impact of tools on certification;
experience reports on developing F-IDEs; experience reports on using F-IDEs;
experience reports on formal methods-based assessments in industrial applications; etc.

October 11 Industry Day (i-Day'2019). Topics include: industrial applications of formal methods,
experience with introducing formal methods in industry, tool usage reports and
experiments with challenge problems; how the use of formal methods has overcome
engineering and certification/qualification problems, led to improvements in design or
provided new insights, with safety and/or security consideration in mind; etc.

October 08-11 19th International Conference on Runtime Verification (RV'2019), Porto, Portugal. Topics include:
monitoring and analysis of the runtime behaviour of software and hardware systems. Application areas
include cyber-physical systems, safety/mission critical systems, enterprise and systems software, cloud
systems, autonomous and reactive control systems, health management and diagnosis systems, and
system security and privacy.

October 13-18 Embedded Systems Week 2019 (ESWEEK'2019), New York City, USA. Topics include: all aspects of
embedded systems and software.

144 Conference Calendar

Volume 40, Number 3, September 2019 Ada User Journal

October 13-18 International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES'2019). Topics include: latest advances in compilers and architectures
for high-performance, low-power embedded systems; compilers for embedded systems:
multi- and many-core processors, GPU architectures, reconfigurable computing
including FPGAs and CGRAs; security, reliability, and predictability: secure
architectures, hardware security, and compilation for software security; architecture and
compiler techniques for reliability and aging; modeling, design, analysis, and
optimization for timing and predictability; validation, verification, testing & debugging
of embedded software; special day on the Internet of Medical Things; etc.

October 13-18 International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS'2019). Topics include: system-level design, modeling, analysis, and
implementation of modern embedded, IoT, and cyber-physical systems, from system-
level specification and optimization down to system synthesis of multi-processor
hardware/software implementations.

October 13-18 ACM SIGBED International Conference on Embedded Software (EMSOFT'2019).
Topics include: the science, engineering, and technology of embedded software
development; research in the design and analysis of software that interacts with physical
processes; results on cyber-physical systems, which compose computation, networking,
and physical dynamics.

 October 14-20 TOOLS 50+1: Technology of Object-Oriented Languages and Systems (TOOLS'2019), Innopolis
(Kazan), Russia. Topics include: new development in object technology; experience reports, technology
transfer; challenges of developing software for embedded systems and Internet of Things; reliability and
dependability; hybrid and cyber-physical systems modeling and verification; etc.

October 17-18 9th Workshop on Model-Based Design of Cyber Physical Systems (CyPhy'2019), New York City,
NY, USA. In conjunction with ESWEEK 2019.

 October 20-25 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2019), Athens, Greece. Topics include: all aspects of software construction and
delivery, at the intersection of programming languages and software engineering.

October 20-25 Onward! 2019. Topics include: everything to do with programming and software,
including processes, methods, languages, communities, and applications; different ways
of thinking about, approaching, and reporting on programming language and software
engineering research.

October 21-22 12th ACM SIGPLAN International Conference on Software Language Engineering
(SLE'2019). Topics include: areas ranging from theoretical and conceptual
contributions, to tools, techniques, and frameworks in the domain of software language
engineering; generic aspects of software languages development rather than aspects of
engineering a specific language; software language design and implementation; software
language validation; software language integration and composition; software language
maintenance (software language reuse, language evolution, language families and
variability); domain-specific approaches for any aspects of SLE (design,
implementation, validation, maintenance); empirical evaluation and experience reports
of language engineering tools (user studies evaluating usability, performance
benchmarks, industrial applications); etc.

Oct 28 - Nov 01 30th IEEE International Symposium on Software Reliability Engineering (ISSRE'2019), Berlin,
Germany. Topics include: development, analysis methods and models throughout the software
development lifecycle; primary dependability attributes (i.e., security, safety, maintainability) impacting
software reliability; secondary dependability attributes (i.e., survivability, resilience, robustness)
impacting software reliability; reliability threats, i.e. faults (defects, bugs, etc.), errors, failures;
reliability means (fault prevention, fault removal, fault tolerance, fault forecasting); reliability of open
source software; etc.

Oct 30 - Nov 04 16th International Colloquium on Theoretical Aspects of Computing (ICTAC'2019), Hammamet,
Tunisia. Topics include: semantics of programming languages; theories of concurrency; theories of
distributed computing; models of objects and components; timed, hybrid, embedded and cyber-physical
systems; static analysis; software verification; software testing; model checking and automated theorem
proving; interactive theorem proving; verified software, formalized programming theory; etc.

Conference Calendar 145

Ada User Journal Volume 40, Number 3, September 2019

November 10-13 24th International Conference on Engineering of Complex Computer Systems (ICECCS'2019),
Hong Kong, China. Topics include: verification and validation, security and privacy of complex
systems, model-driven development, reverse engineering and refactoring, software architecture, design
by contract, agile methods, safety-critical and fault-tolerant architectures, real-time and embedded
systems, systems of systems, cyber-physical systems and Internet of Things (IoT), tools and tool
integration, industrial case studies, etc.

November 11-15 34th IEEE/ACM International Conference on Automated Software Engineering (ASE'2019), San
Diego, California, USA. Topics include: foundations, techniques, and tools for automating the analysis,
design, implementation, testing, and maintenance of large software systems; empirical software
engineering; maintenance and evolution; model-driven development; program comprehension; reverse
engineering and re-engineering; specification languages; software analysis; software architecture and
design; software product line engineering; software security and trust; etc.

November 25-29 22nd Brazilian Symposium on Formal Methods (SBMF'2019), São Paulo, Brazil. Topics include:
techniques and methodologies (such as model-driven engineering, development methodologies with
formal foundations, software evolution based on formal methods, ...); specification and modeling
languages (such as well-founded specification and design languages, formal aspects of popular
languages, logic and semantics for programming and specification languages, code generation, formal
methods of programming paradigms (such as objects, aspects, and component), formal methods for real-
time, hybrid, and safety-critical systems, ...); theoretical foundations (such as type systems, models of
concurrency, security, ...); verification and validation (such as abstraction, modularization and
refinement techniques, correctness by construction, model checking, static analysis, formal techniques
for software testing, software certification, ...); experience reports regarding teaching formal methods;
applications (such as experience reports on the use of formal methods, industrial case studies, tool
support).

November 27-29 20th International Conference on Product-Focused Software Process Improvement
(PROFES'2019), Barcelona, Spain. Topics include: experiences, ideas, innovations, as well as concerns
related to professional software development and process improvement driven by product and service
quality needs.

December 02-04 17th Asian Symposium on Programming Languages and Systems (APLAS'2019), Bali, Indonesia.

December 02-05 26th Asia-Pacific Software Engineering Conference (APSEC'2019), Putrajaya, Malaysia. Topics
include: agile methodologies; component-based software engineering; configuration management and
deployment; cyber-physical systems and Internet of Things; debugging, and fault localization;
embedded real-time systems; formal methods; middleware, frameworks, and APIs; model-driven and
domain-specific engineering; open source development; parallel, distributed, and concurrent systems;
programming languages and systems; refactoring; reverse engineering; security, reliability, and privacy;
software architecture, modelling and design; software comprehension, and traceability; software
engineering education; software engineering tools and environments; software maintenance and
evolution; software product-line engineering; software reuse; software repository mining; testing,
verification, and validation; etc.

December 02-06 15th International Conference on integrated Formal Methods (iFM'2019), Bergen, Norway. Topics
include: hybrid approaches to formal modelling and analysis; i.e. the combination of (formal and semi-
formal) methods for system development, regarding modelling and analysis, and covering all aspects
from language design through verification and analysis techniques to tools and their integration into
software engineering practice.

 December 03-06 40th IEEE Real-Time Systems Symposium (RTSS'2019), Hong Kong. Topics include: all aspects of
real-time systems, including theory, design, analysis, implementation, evaluation, and experience.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2020
January 14-17 12th Software Quality Days (SWQD'2020), Vienna, Austria. Topics include: improvement of software

development methods, processes, and artifacts; testing and quality assurance of software and software-
intensive systems; domain-specific quality issues such as embedded, medical, automotive systems;
novel trends in software quality; etc.

146 Conference Calendar

Volume 40, Number 3, September 2019 Ada User Journal

January 20-24 46th International Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM'2020), Limassol, Cyprus. Topics include: novel and innovative methods and technologies in
the broader field of software engineering, including both software product and development process
aspects; theories, methods and tools aiming at significantly increasing both the quality of software-
intensive systems and the productivity of software development. Deadline for early registration:
November 25, 2019.

 January 29-31 10th European Congress on Embedded Real Time Systems (ERTS'2020), Toulouse, France. Topics
include: all aspects of critical embedded real-time systems, such as embedded computing platforms and
networked systems, model-based system engineering, formal methods, new programming and
verification languages, dependability, safety, cyber security, quality of service, fault tolerance,
maintainability, certification, etc. Deadline for submissions: October 15, 2019 (regular papers),
November 10, 2019 (final short and regular papers).

 February 01 Ada Developer Room at FOSDEM 2020, Brussels, Belgium. FOSDEM 2020 is a two-day event (Sat 1
- Sun 2 Feb). This years' edition includes once more a full-day Ada Developer Room, organized by
Ada-Belgium, which will be held on the first day.

February 22-23 29th ACM SIGPLAN International Conference on Compiler Construction (CC'2020), San Diego,
CA, USA. Co-located with CGO'2020, HPCA'2020, and PPoPP'2020. Topics include: processing
programs in the most general sense (analyzing, transforming or executing input programs that describe
how a system operates, including traditional compiler construction as a special case); compilation and
interpretation techniques (including program representation, analysis, and transformation; code
generation, optimization, and synthesis; the verification thereof); run-time techniques (including
memory management, virtual machines, ...); programming tools (including refactoring editors, checkers,
verifiers, compilers, debuggers, and profilers); techniques for specific domains (such as secure, parallel,
distributed, embedded or mobile environments); design and implementation of novel language
constructs programming models, and domain-specific languages. Deadline for submissions: October 23,
2019 (abstracts), October 30, 2019 (papers), December 13, 2019 (artifacts).

February 27-29 13th Innovations in Software Engineering Conference (ISEC'2020), Jabalpur, India. Deadline for
submissions: October 4, 2019 (research track papers), October 31, 2019 (Ph.D. symposium papers,
tutorials, startups and tech-briefing track proposals), November 15, 2019 (student software project
contest track submissions).

 March 23-26 International Conference on the Art, Science, and Engineering of Programming
(Programming'2020), Porto, Portugal. Deadline for submissions: October 1, 2019 (workshops).

March 23-27 13th IEEE International Conference on Software Testing, Verification and Validation (ICST'2020),
Porto, Portugal. Topics include: manual testing practices and techniques, security testing, model based
testing, test automation, static analysis and symbolic execution, formal verification and model checking,
software reliability, testability and design, testing and development processes, testing in specific
domains (such as embedded, concurrent, distributed, ..., and real-time systems), testing/debugging tools,
empirical studies, experience reports, etc. Deadline for submissions: October 14, 2019 (full research and
industry papers), December 9, 2019 (testing tool track), December 12, 2019 (tool demos, posters),
January 13, 2020 (doctoral symposium).

Mar 30 - Apr 03 35th ACM Symposium on Applied Computing (SAC'2020), Brno, Czech Republic.

Mar 30- Apr 03 Track on Software Verification and Testing (SVT'2020). Topics include: new results
in formal verification and testing, technologies to improve the usability of formal
methods in software engineering, applications of mechanical verification to large scale
software, model checking, correct by construction development, model-based testing,
software testing, static and dynamic analysis, analysis methods for dependable systems,
software certification and proof carrying code, fault diagnosis and debugging,
verification and validation of large scale software systems, real world applications and
case studies applying software testing and verification, etc.

Mar 30- Apr 03 Embedded Systems Track (EMBS'2020). Topics include: system-level design and
simulation techniques for embedded systems; testing, debugging, profiling and
performance analysis of embedded systems; multicore and SoC-based embedded
systems and applications; multithreading in embedded systems design and development;
security and dependability support within embedded systems; RTOS for embedded

Conference Calendar 147

Ada User Journal Volume 40, Number 3, September 2019

systems, safety-critical embedded systems; compilation strategies, code transformation
and parallelization for embedded systems; memory and storage management for
embedded systems; case studies; etc.

April 14-17 24th International Conference on Evaluation and Assessment in Software Engineering
(EASE'2020), Trondheim, Norway. Topics include: assessing the benefits / costs associated with using
chosen development technologies; empirical studies using qualitative, quantitative, and mixed methods;
evaluation and comparison of techniques and models; replication of empirical studies and families of
studies; etc. Deadline for submissions: November 1, 2019 (workshops), December 15, 2019 (full
research track abstracts), December 17, 2019 (full research track papers), December 22, 2019 (short
paper and artefact track papers, vision paper and emerging results track papers, industry track papers,
doctoral symposium and posters track papers), January 13, 2020 (workshop papers), January 17, 2020
(tutorials, discussion panel proposals).

 April 22-24 20th International Real-Time Ada Workshop (IRTAW'2020), Benicàssim, Spain.

April 25-30 23rd European Joint Conferences on Theory and Practice of Software (ETAPS'2020), Dublin,
Ireland. Events include: ESOP (European Symposium on Programming), FASE (Fundamental
Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and Computation
Structures), TACAS (Tools and Algorithms for the Construction and Analysis of Systems). Deadline for
submissions: October 24, 2019 (papers).

May 23-29 42nd International Conference on Software Engineering (ICSE'2020), Seoul, South Korea. Topics
include: the full spectrum of Software Engineering.

 June 08-12 25th Ada-Europe International Conference on Reliable Software
Technologies (AEiC 2020 aka Ada-Europe 2020), Santander, Spain. Sponsored by
Ada-Europe. Deadline for submissions: January 7, 2020 (journal-track papers,
industrial presentation outlines, tutorial and workshop proposals), 31 March 2020
(Work-in-Progress papers).

July 29-31 32nd International Conference on Software Engineering Education and Training (CSEET'2020),
Munich, Germany. Topics include: Teaching formal methods (TFM), Teaching "real world" SE
practices (TRW), Software quality assurance education (SQE), Global and distributed SE education
(GDE), Open source in education (OSE), Cooperation between Industry and Academia (CIA), Training
models in industry (TMI), Continuous education (CED), Methodological aspects of SE education
(MAE), etc. Deadline for submissions: November 30, 2019 (workshops, tutorials), February 1, 2020
(abstracts for research papers, industrial experience reports, Journal First submissions, posters, tools,
panels), February 8, 2020 (research papers, industrial experience reports, Journal First submissions,
posters, tools, panels).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

 153

Ada User Journal Volume 40, Number 3, September 2019

ARG Work in Progress III
Jeff Cousins CEng FIET
Member and former chair of the Ada Rapporteur Group; email: jeffrey.cousins@btinternet.com

Abstract

The bulk of the work on proposing the next edition of
Ada is complete, including the support for
parallelism, and we are now entering a prototyping
and validation phase.

1 Introduction

This paper presents a further update on the proposed
changes for the next edition of Ada, previously referred to
as Ada 2020 in anticipation of publication in 2020, but now
likely to be some time later. The previous papers were
published in the Vol. 38, No. 1, March 2017 and Vol. 39,
No. 3, September 2018 editions of the AUJ.

As before, Ada Issues (AIs) are first worked on and
approved by the Ada Rapporteur Group (ARG). They are
then passed to WG 9 (the ISO/IEC Working Group
responsible for Ada) for consideration and approval before
eventually being consolidated and sent to ISO for formal
processing to create a revised international standard.

In addition to the usual October meeting in the USA in
2018, the ARG held many electronic meetings from
December 2018 to May 2019, in an endeavour to get the
draft Ada 202X standard ready for submission to WG 9 in
June 2019.

Near the end of April 2019 a major Ada compiler vendor
asked that the schedule be slipped by a year or two in order
to allow time for prototyping the new features, particularly
in the priority area of finer grained parallelism, before
standardising them. As a result, no AIs were submitted to
WG 9 for approval in June 2019.

This caution seems justified as this is a difficult area to get
right – the proposal for parallel programming extensions to
the C language was recently withdrawn.

In the light of the request to delay the submission of the
Ada 202X standard, WG 9 proposed to allow vendors a
year to prototype the proposed new features and for
comments on the new features to be submitted, then a year
to update the proposed new features in response. This
proposal was balloted, and the result was unanimously in
favour.

Many thanks to John Barnes for his review comments.

2 WG 9 approved

This section describes some of the more important changes
to the language that have been approved by WG 9.

The issues listed in the previous paper as being in the
pipeline were approved by WG 9, viz:

 Parallel operations (AI12-0119);

 Loop body as anonymous procedure (AI12-0189);

 Generalize expressions that are objects (AI12-
0226);

 Contracts for generic formal parameters (AI12-
0272);

 Make subtype_mark optional in object renames
(AI12-0275).

3 In the pipeline

These have been approved by the ARG but have yet to be
approved by WG 9. With many AIs being ARG approved
and entering the "pipeline", but none being WG 9 approved
and leaving since October 2018, the pipeline is now rather
bulging!

3.1 From previous “The Future”s
The following proposals to support parallelism were
approved by the ARG:

 Global-in and global-out annotations to specify
which global objects a subprogram may access,
and in which mode (AI12-0079);

 Reduction Expressions (AI12-0242);

 Explicit chunk definition for parallel loops (AI12-
0251-1). (Alternative Parallel loop chunking
libraries AI12-0251-2 was voted No Action);

 Map/Reduce Attribute (AI12-0262);

 Parallel Container Iterators (AI12-0266);

 Data race and non-blocking checks for explicit
parallelism (AI12-0267).

Some of these are expanded below. Section 5 attempts to
describe how these features fit together.

The bulk of the Real-Time proposals were ARG approved:

 Deadline Floor Protocol (AI12-0230);

 Compare-and-swap for atomic objects (AI12-
0234);

 Admission Policy Defined for Acquiring a
Protected Object Resource (AI12-0276);

 Dispatching Needs More Dispatching Points
(AI12-0279);

 CPU Affinity for Protected Objects (AI12-0281);

 Atomic and Volatile generic formal types (AI12-
0282);

154 ARG Work in Progress I I I

Volume 40, Number 3, September 2019 Ada User Journal

 Restriction Pure_Barriers (AI12-0290);

 Jorvik Profile (AI12-0291).

Other proposals that were ARG approved include:

 'Image for all types (AI12-0020);

 Predefined big numbers support (AI12-0208);

 Declare expressions (AI12-0236). This is
expanded below;

 Access value aliasing and parameter aliasing
(AI12-0240). This was split into 6 alternatives, of
which the simplest (relatively!), "Global aspect
and access types used to implement Abstract Data
Types" (AI12-0240-6), was eventually approved.
This is expanded below;

 User-defined literals (AI12-0249);

 Iterator Filters (AI12-0250).

3.2 Array Aggregates; generalized array
aggregates (AI12-0212)
Currently, it is quite tedious to initialise a container, one
has to create it as an empty container and then add elements
one at a time, as in:

X : My_Set := Empty_Set;
Include (X, 1);
Include (X, 2);
Include (X, 3);

Using the new positional container aggregate, this could be
replaced by simply:

X : My_Set := [1, 2, 3];

Note that this uses square brackets not round ones. This
allows the use of [] to indicate an empty container,
analogous to "" indicating an empty string.

This is achieved using a new aspect indicating what the
appropriate function is for returning an empty container of
the particular container type, and what the appropriate
procedure is for adding an element to the particular
container type, for example:

type Set is tagged private
 with -- Ada 2012 has these
 Constant_Indexing => Constant_Reference,
 Default_Iterator => Iterate,
 Iterator_Element => Element_Type,
 -- This is new
 Aggregate => (Empty => Empty_Set,
 Add_Unnamed => Include);

Iteration is also possible within the container aggregate, for
example to create a set whose elements all have double the
value of the corresponding elements of another set:

Doubles_Set : My_Set := [for Item of X => Item * 2];

Note that this uses similar syntax to that introduced by
Index parameters in array aggregates (AI12-0061).

And – prepare yourself for a shock! – array aggregates are
also allowed to use square brackets as an alternative to
round ones. This is to emphasise the similarity in
characteristics between containers and arrays, allow the use
of [] for an empty array, and allow the use of positional
notation for a single element array. Remember that

 Two_Array : array (1 .. 2) of Positive := (1, 2);

is allowed, but:

 One_Array : array (1 .. 1) of Positive := (1);

is not allowed.

3.3 Declare expressions (AI12-0236)
As the power of expressions has grown, some felt that it
would help to allow local constants and object renamings
within an expression, to avoid repeated subexpressions. For
example, the postcondition for Fgetc could be clarified
from:

(if Stream.The_File (Stream.Cur_Position'Old) =
 EOF_Ch
 then Stream.Cur_Position = Stream.Cur_Position'Old
 and then Result = EOF
 elsif Stream.The_File (Stream.Cur_Position'Old) =
 ASCII.LF
 then Stream.Cur_Position = Stream.Cur_Position'Old
 and then Result = Character'Pos (ASCII.LF)
 else
 Stream.Cur_Position = Stream.Cur_Position'Old + 1
 and then Result = Character'Pos (Stream.The_File
 (Stream.Cur_Position'Old)))

to:

(declare
 Old_Pos : constant Position :=
 Stream.Cur_Position'Old;
 The_Char : constant Character :=
 Stream.The_File(Old_Pos);
 Pos_Unchg : constant Boolean :=
 Stream.Cur_Position = Old_Pos;
 begin
 (if The_Char = EOF_Ch
 then Pos_Unchg and then Result = EOF
 elsif The_Char = ASCII.LF
 then Pos_Unchg and then Result =
 Character'Pos(ASCII.LF)
 else
 Stream.Cur_Position = Old_Pos + 1
 and then Result = Character'Pos (The_Char)))

This uses the reserved words declare and begin, as for a
block, but not end, as it is only used within parentheses.

3.4 Global aspect and access types used to
implement Abstract Data Types (AI12-0240-6)
Abstract data types are normally provided in Ada by
defining the internal structure of the data type in the private
part of a package spec, and defining subprograms to access
the data in the visible part. For an unbounded container, the
implementation will typically include a "root" object with

J. Cousins 155

Ada User Journal Volume 40, Number 3, September 2019

components of an access type pointing to "subordinate"
objects allocated from the heap, but all logically one
"compound" object; for example a linked list. Given that
the internal details of the data type are not visible, it is not
possible to be more specific in the Global aspect (added by
Global-in and global-out annotations (AI12-0079)) about
the access types used other than to apply the global mode to
the whole package. This would also tend to lump together
all objects of the same type whereas two distinct objects of
a container type are unlikely to share any storage. Thus
data-race checking introduced by Data race and non-
blocking checks for explicit parallelism (AI12-0267) would
be likely to give a lot of false positives.

This proposal adds the aspect Compound to indicate that a
type is a root with a component of an access type pointing
to a subordinate object. This type must be controlled or
have a limited partial view to avoid the use of predefined
assignment, which wouldn't do a "deep copy" of all the
subordinate objects.

The aspect Internal is used to indicate that an access object
is an internal pointer. Dereferences of such a pointer are not
considered Global effects. The aspect may also be applied
to an access subtype, in which case it specifies the default
for any object of the subtype.

For an example, a singly linked list type might have:

private
 type Node;
 type Node_Ptr is access Node;
 type Node is limited record
 Elem : Element_Type;
 Next : Node_Ptr with Internal;
 end record
 with Compound;
 type List is ... with record
 Head : Node_Ptr with Internal;
 ...
 end record
 with Compound;

The new attribute 'Move is used to move such internal
pointers, for example:

New_Node.Next := Preceder.Next'Move;

when inserting a node into a list. The value of the RHS is
copied to the LHS, then the RHS is set to null, so that only
one pointer can be pointing to the subordinate object.

The second part of this proposal deals with "handles", for
example the File_Type of Text_IO or the Generator of
Discrete_Random. In:

procedure Put (File : in File_Type; Item : in String);

the File parameter is of mode in as the parameter itself isn't
modified, yet the state associated with the file is modified.
This can now be indicated using an overriding global mode,
thus:

procedure Put (File : in File_Type; Item : in String)
 with
 Global => overriding in out File;

The third part of this proposal says that access parameters
are assumed to be dereferenced without the Global aspect
having to bother giving details.

3.5 Map-Reduce Attribute (AI12-0262)
This provides a mechanism to take a stream of values – a
"value sequence"- from an aggregate (making use of Array
Aggregates; generalized array aggregates (AI12-0212)
described above), and repeatedly apply the same operation
to combine the values to produce a single result. Examples
include adding a sequence of squares for "sum of squares"
or multiplying a sequence of numbers when calculating a
factorial. An initial value is required, usually something
neutral that has no effect on the result, such as 0 for
addition or 1 for multiplication. A parallel version is
provided, though if the combining operation is something
simple such as addition then the overhead of managing the
parallelism is likely to outweigh any performance benefit of
performing the additions in parallel. Some examples:

-- A reduction expression that outputs the
-- sum of squares
Put_Line ("Sum of Squares is" & Integer'Image
 ([for I in 1 .. 10 => I**2]'Reduce("+", 0));
-- An expression function that returns its result as
-- a Reduction Expression
function Factorial (N : Natural) return Natural is
 ([parallel for J in 1..N => J]'Reduce("*", 1));

It is important to note that the values are not put in some
temporary array then combined, but are combined "on the
fly" as each value is produced.

3.6 Shorthand Reduction Expressions for Objects
(AI12-0242)
This provides a shorthand for cases where the object is an
array or iterable container. For example:

Sum : constant Integer := A'Reduce("+", 0);

is short for:

Sum : constant Integer :=
 [for Value of A => Value]'Reduce("+", 0);

Similarly:

Sum : constant Integer := A'Parallel_Reduce("+", 0);

is short for:

Sum : constant Integer :=
 [parallel for Value of A => Value]'Reduce("+", 0);

3.7 User-defined string literals (AI12-0295)
This allows the user to define string literals to be used with
a non-string type, by identifying (using an aspect) a
function that will do the interpretation. For example:

type Varying_String is private
 with String_Literal => To_Varying_String;

156 ARG Work in Progress I I I

Volume 40, Number 3, September 2019 Ada User Journal

function To_Varying_String (Source :
 Wide_Wide_String)
 return Varying_String;
...
X : constant Varying_String := "This is a test";

This is equivalent to:

X : constant Varying_String :=
 To_Varying_String
 (Wide_Wide_String'("This is a test"));

3.8 Revise the conflict check policies to ensure
compatibility (AI12-0298)
AI12-0267 introduced the notion of Conflict Check
policies, to control the degree of checking for potential data
races. It is important that the default for the new parallel
constructs is that all possible conflicts are checked, but for
backward compatibility we want the default for tasking
constructs to be no checks. Thus the pragma
Conflict_Check_Policy now permits two separate policies,
one for parallel constructs, and one for tasking. The
policies for parallel constructs include:

 No_Parallel_Conflict_Checks
 Known_Parallel_Conflict_Checks
 All_Parallel_Conflict_Checks

and similarly the policies for tasking include:

 No_Tasking_Conflict_Checks
 Known_Tasking_Conflict_Checks
 All_Tasking_Conflict_Checks.

The default policy is:

pragma Conflict_Check_Policy
(All_Parallel_Conflict_Checks,
No_Tasking_Conflict_Checks);

If the policies for parallel constructs and tasking checking
are the same then the pragma may just take one parameter,
thus:

pragma Conflict_Check_Policy (No_Conflict_Checks);

is a shorthand for:

pragma Conflict_Check_Policy
 (No_Parallel_Conflict_Checks,
 No_Tasking_Conflict_Checks);

Similarly for Known_Conflict_Checks and All_Conflict_
Checks.

3.9 Nonblocking for Unchecked_Deallocation is
wrong (AI12-0319)
This tidies up some of the details of the Nonblocking aspect.
The Nonblocking aspect can be used to specify whether a
type's initialization, finalization, and assignments allow
blocking. It can also be used for objects to describe the
storage pool of an access type. These abilities are then used
to ensure that the Unchecked_Deallocation generic cannot
be instantiated with a type whose Finalize routine blocks.
The standard storage pool(s) are also defined to be
Nonblocking.

4 The Future

4.1 Carried over from previous “The Future”s
Ghost code (AI12-0239), code that is added to support
specification and verification, remains under investigation.

Thread-safe Ada libraries (AI12-0139) and several
alternatives of Generators/co-routines (AI12-0197) remain
open but are not being actively worked on.

Defaults for generic formal parameters (AI12-0205), and
its spin-off Defaults for generic formal packages and
formal "in out" objects (AI12-0297), were voted Hold (until
a future edition). But there are also a couple of other AIs
relating to making generics easier for the user: Implicit
instantiations (AI12-0215) and Automatic instantiation for
generic formal parameters (AI12-0268) – so it is now
intended to merge the most promising features of all of
these AIs into a "Best of" AI.

4.2 Making 'Old more sensible (AI12-0280-2)
Currently the following is illegal as the A.all in A.all'Old is
"potentially unevaluated":

procedure Proc (A : access Integer)
 with Post =>
 (if A /= null then (A.all'Old > 1 and A.all > 1));

It is proposed to relax this. Thinking less of what it may not
be possible to evaluate, but more of what CAN be
evaluated in advance, the term "known on entry" is
introduced to cover such expressions (the most obvious
example being a static expression), and if it is possible to
tell on entry to a subprogram that an X'Old need not be
evaluated then it isn't. In the example, A is an in parameter
of an elementary type (which includes access types) so it is
passed by copy and cannot change, so if A is null on entry
then A.all'Old would not be evaluated.

4.3 Default Global aspect for language-defined
units (AI12-0302)
AI12-0079 added the Global aspect, with a default value of
"in out all" (i.e. read and write of an unspecified set of
global variables), or "null" for Pure packages (i.e. no read
or write of any global variable). The former is inconsistent
with the requirement that language-defined packages be
reentrant. So for most language-defined packages (that are
not Pure) it is proposed to add an explicit value of
"synchronized in out <unit_name>" (i.e. read and write of
the set of global variables that are tasks, protected objects,
or atomic objects, of the containing package).

But where some unknown, unsynchronised variable holds
state (such as Current_Input or Current_Output for Text_IO)
then only "in out <unit_name>" can be stated. This would
mean that two concurrent subprogram calls using either
Current_Input or Current_Output would be considered to
conflict.

Some parameters may be "handles", for example the
File_Type of Text_IO, which even if of mode in may be
used by a subprogram to update state. For these this AI

J. Cousins 157

Ada User Journal Volume 40, Number 3, September 2019

proposes that the value should be "overriding in [out]
<param>".

4.4 Bounded errors associated with procedural
iterators (AI12-0326-2)
AI12-0189-1 introduced the Allows_Exit aspect to specify
that a subprogram is designed to allow use in a procedural
iterator. However, that AI did not explain what restrictions,
if any, exist on a subprogram that specifies Allows_Exit. It
is proposed to make it a bounded error for an Allows_Exit
subprogram to call the loop body procedure from an abort-
deferred operation (unless the whole loop_statement was
within this same abort-deferred operation), as this would
interfere with implementing a transfer of control.

It is also proposed to add the reserved word parallel to the
syntax for procedural iterators, and to make it a bounded
error to call a loop-body procedure from multiple logical
threads of control unless parallel is specified.

5 Parallelism - How the pieces fit together

5.1 Parallel constructs and the need to consider
potential blocks and conflicts over the access to
global data
Parallel operations (AI12-0119) is the prime AI for
satisfying the first instruction from WG 9 to the ARG, i.e.
"Improving the capabilities of Ada on multi-core and multi-
threaded architectures". The parallel constructs were
described in one of the previous articles. It is intended that
they use light weight threading so as to incur fewer
overheads than tasking. To reduce implementation
complexity and reduce the risk of deadlock, blocking is not
allowed in a parallel construct, thus it is a bounded error to
invoke an operation that is potentially blocking during the
execution of a parallel construct. The compiler may
complain if a parallel sequence calls a potentially blocking
operation. It may also complain if parallel sequences have
conflicting global side-effects.

5.2 Nonblocking and data race checks
Data race and non-blocking checks for explicit parallelism
(AI12-0267) provides the rules to check for blocking
operations and for race conditions within parallel
constructs. A "data race" occurs when two concurrent
activities attempt to access the same data object without
appropriate synchronization and at least one of the accesses
updates the object. Such "conflicting" concurrent activities
are considered erroneous.

This AI was subsequently amended by Revise the conflict
check policies to ensure compatibility (AI12-0298),
described above.

5.3 Defining Nonblocking
Nonblocking subprograms (AI12-0064-2) provides the
mechanism for specifying that a subprogram should not
block. As well as contributing to the parallelism proposals,
this may also assist timing analysis and deadlock
avoidance. Specifying Nonblocking for Language-Defined
Units (AI12-0241) then uses this mechanism to specify the

Nonblocking status for Ada's own units (that is, child units
of packages Ada and System).

5.4 Defining access to global data
Global-in and global-out annotations (AI12-0079) provides
the mechanism for describing the use of global objects by
subprograms. It is intended that Default Global aspect for
language-defined units (AI12-0302) (not yet ARG
approved) then uses this mechanism to specify the Global
aspect for Ada's own units.

5.5 Parallel iteration over containers besides
arrays
Parallel operations (AI12-0119) provided the mechanism
iterating in parallel over the elements of an array, Parallel
iterators are defined for containers (AI12-0266) provides
the equivalent mechanism for iterating over containers.

5.6 Control over the degree of parallelism
Explicit chunk definition for parallel loops (AI12-0251-1)
gives the user control of the degree of parallelism, for
example if processing 100 elements of an array on a 20
core machine one may wish to have 10 logical threads of
control (potentially executing on one core each) each
processing a group of 10 elements. Such a group is referred
to as a "chunk".

5.7 Reduction
Map-Reduce Attribute (AI12-0262), described above,
provides a mechanism for taking a stream of values and
repeatedly applying the same operation to combine the
values to produce a single result. This has a parallel form.

Shorthand Reduction Expressions for Objects (AI12-0242),
also described above, provides a shorthand for cases where
the object is an array or iterable container.

5.8 An example of the features working together
Not directly related to parallelism, Index parameters in
array aggregates (AI12-0061) is also used in the example
below as it is just such a useful new feature.

-- AI12-0241 Specifying Nonblocking for
-- Language-Defined Units
-- AI12-0079 Global-in and global-out annotations –
-- default Global => null" (i.e. no read or write of any --
-- global variable) for Pure packages
-- package
 -- Ada.Numerics.Generic_Elementary_Functions
-- with Pure, Nonblocking is
-- function Sqrt (X : Float_Type’Base) return
-- Float_Type’Base;
-- …
with Ada.Numerics.Elementary_Functions;
-- …
declare
 Max_CPUs_To_Use : constant := 10;
 Max : constant := 100;
 subtype Range_Type is Positive range 1 .. Max;
 type Float_Array_Type is
 array (Range_Type) of Float;

158 ARG Work in Progress I I I

Volume 40, Number 3, September 2019 Ada User Journal

 type Positive_Array_Type is
 array (Range_Type) of Positive;
 -- AI12-0061 Index parameters in array aggregates
 -- modified by Aggregates; generalized array
 -- aggregates (AI12-0212) to use []
 Numbers : constant Positive_Array_Type :=
 [for I in Range_Type => I];
 Squares : Positive_Array_Type;
 Square_Roots : Float_Array_Type;
 Sum_Of_Squares : Integer;
 -- AI12-0064-2 - Nonblocking subprograms
 -- AI12-0079 Global-in and global-out annotations
 function Square (P : Positive) return Positive
 with Nonblocking, Global => null;
 function Square (P : Positive) return Positive is
 (P**2);
begin
 -- Ignoring any risk of overflows…

 -- AI12-0119 Parallel operations
 -- Iteration over the elements of an array
 -- AI12-0251-1 Explicit chunk definition for parallel
 -- loops
 parallel (Max_CPUs_To_Use) for I in Range_Type
 loop
 Squares (I) := Square (I);
 Square_Roots (I) :=
 Ada.Numerics.Elementary_Functions.Sqrt (Float (I));
 end loop;
 -- AI12-0242 Shorthand Reduction Expressions for
 -- Objects (dependent on AI12-0262 Map-Reduce
 -- Attribute)
 Sum_Of_Squares := Squares'Reduce ("+", 0);
end;

6 Conclusions

The Ada 202X proposals are largely complete, but we are
now entering a validation phase before putting them
forward to WG 9.

https://github.com/ada-ros/rclada/blob/master/gpr_rcl/src/overrides/rcl_allocator_h.ads
https://github.com/ada-ros/rclada/blob/master/gpr_rcl/src/overrides/rcl_allocator_h.ads

https://github.com/ada-ros/ada4ros2/

174 Model ing Swar m Inte l l igence Algor i thms for CPS Swar ms

Figure 6: Generic communication interface.

the Hexbug Spider toy for tests and experiments of swarms
of CPSs in research and education (see Figure 7). At the
moment, the Spiderino offers five CNY70 reflective photo
sensors, one GP2D12 distance sensor, a WiFi module, and
basic locomotion capabilities (turn head right/left, move for-
ward/backward). The Spiderino platform is an active project
and additional components are added steadily.

Figure 7: Using a swarm of Spiderinos for research and educa-
tion.

To model the hardware of the Spiderino, we need a number
of models for sensors, actuators (introduced in [12]), and
communication (introduced in this paper) that serve as in-
put/output to the behavior:

• rs:CNY70 (5x)

– Description: “The rs:CNY70 is a photo-reflex opto-
isolator. It allows to measure reflected light from an
integrated IR-LED through an IR-phototransistor.”

– Output: light_value, type: int

• dms:GP2D12

– Description: “The dms:GP2D12 is a IR-distance
sensor that measures distances between 10 cm and
80 cm.”

– Output: distance, type: int

• l1:Locomotion

– Description: “The l1:locomotion is a DC-motor,
used to turn the head left or right.”

– Input: turn_left_right, type: int

• l2:Locomotion

– Description: “The l2:locomotion is a DC-motor,
used to move back and forward.”

– Input: move_back_forward, type: int

• c1:Communication Interface

– Description: “The c1:communication interface de-
scribes the WiFi module of the Spiderino. It mea-
sures the received signal strength rssi to recog-
nize other Spiderinos.”

– Properties:

* IEEE802.11, type: Technology

* MetaData, type: Data

* Localhost, type: Address

* Broadcast, type: Address

– Input: transmitted_data, type: Data

– Output: received_data, type: Data

5.1 Swarm Algorithm

As described, the Spiderino platform comes with a number
of sensors, actuators, and a communication module. We
model a Spiderino applying the swarm intelligence algorithm
BEECLUST [30] as behavior which is inspired by the behav-
ior of young honeybees. BEECLUST is a simple algorithm,
mainly using three rules and already applied to underwater
vehicles by Bodi et al. in [31]. For the model of the swarm
intelligence algorithm we need following modeling elements
and formalisms, whereby w0 indicates the predefined waiting
time, wmax the maximal waiting time, w(t) the calculated
waiting time, s(t) the aggregated light sensor values (from
sensors rs1-rs5), � the steepness of the stimulus-response
curve, and rssithr the threshold for the rssi value:

s2:BEECLUST

• Description: “The BEECLUST is used for clustering
all swarm members, applying three rules: 1. move
randomly, 2. if a Spiderino meets another Spiderino
(rssi>rssithr), they stop with a certain probability.
Their waiting time depends on the local temperature (in
our example the light intensity) and wmax. The “colder"
the local location is, the shorter is the waiting time and
the other way around. 3. if a Spiderino hits a wall, it
waits for a predefined waiting time w0. Pseudo code:

move randomly
if Spiderino meets another Spiderino
(rssi>rssithr) then

stop with waiting time w(t)
w(t) = (wmaxs(t)2)=(s(t)2 + �)

else
if Spiderino hits a wall

(distance<15cm) then
stop with waiting time w0

end if
end if

• Properties:

– w0, type: int

– wmax, type: int

– rssithr, type: int

Volume 40, Number 3, September 2019 Ada User Jour na l

M. Schranz, M. Sende, A. Bagnato, E. Brosse 175

Figure 8: Model of the Spiderino platform using the proposed modeling elements.

Figure 9: Model of the customized BEECLUST swarm intelli-
gence algorithm using actions in an activity diagram.

• Inputs:

– light_value, type: int [5]

– distance, type: int

– received_data, type: MetaData

• Outputs:

– move_back_forward, type: int

– turn_left_right, type: int

– transmitted_data, type: Data

Applying the CPS modeling concepts presented in Section 2.2
from Schranz et al. [12], the Spiderino model has the form
as visualized in Figure 8 aggregating the hardware with the
swarm algorithm model using SysML. This model visualizes

a single CPS. The concept of modeling a swarm of individ-
ual swarm members was already introduced in Section 2.2,
Figure 2.

5.2 Swarm Behavior

As described in Section 3.3, the swarm behavior library can be
used to customize a swarm intelligence algorithm by creating
an activity diagram from single action elements. A selection
of possible actions is visualized in Figure 5.

For the Spiderino example, we decided to customize the
BEECLUST algorithm with an additional functionality: each
Spiderino shall update an internal list with all x/y coordinates
(in a relative coordinate system), whenever it makes a mea-
surement. These coordinates can be read out, transformed to a
global coordinate system, and interpreted at the end of a mis-
sion. The corresponding activity diagram of the customized
BEECLUST with this additional functionality is depicted in
Figure 9 and demonstrates the usage of the action library.
To gain the desired behavior, we added the action update
routing table to the BEECLUST algorithm, described
in Section 5.1.

6 Conclusion
Modeling swarm intelligence algorithms for applications of
swarms of CPSs from a software engineering perspective has
not received much attention in the past. No standards exist,
although engineers reach their limits in designing swarms of

Ada User Jour na l Vo lume 40, Number 3, September 2019

176 Model ing Swar m Inte l l igence Algor i thms for CPS Swar ms

CPSs to implement features like adaptability, scalability, and
robustness for dynamically changing environments.

In this paper we introduce a new approach for dealing with
the complexity in swarms of CPSs. Using SysML and UML
as a basis, we propose a two-level hierarchy to model swarm
intelligence algorithms: as swarm algorithms or from indi-
vidual actions as swarm behaviors. In the swarm algorithm
library, we present and model swarm intelligence algorithms
as they are, the corresponding code is deposited. In the swarm
behavior library, the behavior can be created by a sequence
of actions in an activity diagram. This allows to create new
or customize existing swarm intelligence algorithms to be
used as models for the design of swarms of CPSs. We demon-
strate the modeling approaches using the Spiderino, a robotic
platform with several sensors and actuators, applying the
BEECLUST algorithm as example for modeling swarm in-
telligence algorithms. A video of the Spiderinos using this
algorithm can be found online6.

In future work, we will further investigate on the theoretical
formalisms to extract and position new actions. The idea is
to extract them from multiple swarm intelligence algorithms
and collect them in an action library. This library drastically
reduces the customization effort when designing own swarm
intelligence algorithms. As the proposed modeling approach
is part of the CPSwarm project, it is also going to be integrated
in the CPSwarm workbench—a tool chain to design, optimize,
simulate, and deploy a swarm of CPSs. The developed models
are available on the Modelio Forge7.

Acknowledgment
We thank Arthur Pitman and Midhat Jdeed for their feedback.

The research leading to these results has received funding
from the European Union Horizon 2020 research and innova-
tion program under grant agreement No 731946, CPSwarm
Project.

References
[1] E. A. Lee and S. A. Seshia (2016), Introduction to em-

bedded systems: A cyber-physical systems approach,
MIT Press.

[2] E. A. Lee (2008), Cyber physical systems: Design chal-
lenges, in Proceedings of the 11th IEEE International
Symposium on Object Oriented Real-Time Distributed
Computing, pp. 363–369.

[3] D. Green, A. Aleti, and J. Garcia (2017), The nature of
nature: Why nature-inspired algorithms work, Nature-
Inspired Computing and Optimization: Theory and Ap-
plications (S. Patnaik, X.-S. Yang, and K. Nakamatsu,
eds.), pp. 1–27, Springer.

[4] H. Hamann and T. Schmickl(2012), Modelling the
swarm: Analysing biological and engineered swarm
systems, Mathematical and Computer Modelling of Dy-
namical Systems, vol. 18, no. 1, pp. 1–12, 2012.

6https://www.youtube.com/watch?v=u5SZUujAsYg
7http://forge.modelio.org/projects/cpswarm-modelio37/files

[5] C. W. Reynolds (1987), Flocks, herds and schools: A
distributed behavioral model, Proceedings of the 14th
Annual Conference on Computer Graphics and Interac-
tive Techniques, pp. 25–34.

[6] L. Pitonakova, R. Crowder, and S. Bullock (2017),
Behaviour-Data Relations Modelling Language for
multi-robot control algorithms, Proceedings of the
2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 727–732.

[7] F. Ducatelle, G. A. Di Caro, C. Pinciroli, and L. M. Gam-
bardella (2011), Self-organized cooperation between
robotic swarms, Swarm Intelligence, vol. 5, no. 2, p. 73.

[8] O. Soysal and E. Sahin (2005), Probabilistic aggrega-
tion strategies in swarm robotic systems, Proceedings
of the IEEE Swarm Intelligence Symposium, vol. 2005,
pp. 325–332.

[9] T. T. Do, M. Kolp, and A. Pirotte (2003), Social patterns
for designing multi-agent systems, Proceedings of the
15th International Conference on Software Engineering
& Knowledge Engineering, pp. 103–110.

[10] D. Floreano and F. Mondada(1998), Hardware solutions
for evolutionary robotics, in Proceedings of the Euro-
pean Workshop on Evolutionary Robotics, pp. 137–151,
Springer.

[11] A. Bagnato, R. K. Bíró, D. Bonino, C. Pastrone, W. El-
menreich, R. Reiners, M. Schranz, and E. Arnautovic
(2017), Designing swarms of cyber-physical systems:
The H2020 cpswarm project: Invited paper, in Proceed-
ings of the Computing Frontiers Conference, CF’17,
pp. 305–312.

[12] M. Schranz, A. Bagnato, E. Brosse, and W. Elemenreich
(2018), Modelling a cps swarm system: A simple case
study, Proceedings of the 6th International Conference
on Model-Driven Engineering and Software Develop-
ment, pp. 1–10.

[13] M. Jdeed, S. Zhevzhyk, F. Steinkellner, and W. Elmen-
reich (2017), Spiderino-a low-cost robot for swarm re-
search and educational purposes, in Proceedings of the
13th Workshop on Intelligent Solutions in Embedded
Systems, pp. 35–39.

[14] H. Ahmed and J. Glasgow (2012), Swarm intelligence:
Concepts, models and applications, Technical report
2012-585, School of Computing, Queen’s University,
Ontario, Canada.

[15] R. S. Parpinelli and H. S. Lopes (2011), New inspi-
rations in swarm intelligence: a survey, International
Journal of Bio-Inspired Computation, vol. 3, no. 1, pp. 1–
16.

[16] A. E. Hassanien and E. Alamry (2015), Swarm Intelli-
gence: Principles, Advances, and Applications, CRC
Press.

[17] X.-S. Yang, S. Deb, Y.-X. Zhao, S. Fong, and X. He
(2017), Swarm intelligence: past, present and future,
Soft Computing, pp. 1–11.

Volume 40, Number 3, September 2019 Ada User Jour na l

M. Schranz, M. Sende, A. Bagnato, E. Brosse 177

[18] H. Hamann and H. Wörn (2008), A framework of space–
time continuous models for algorithm design in swarm
robotics, Swarm Intelligence, vol. 2, no. 2-4, pp. 209–
239.

[19] C. Pinciroli, A. Lee-Brown, and G. Beltrame (2015),
Buzz: An extensible programming language for self-
organizing heterogeneous robot swarms, arXiv preprint
arXiv:1507.05946.

[20] R. Brooks (1986), A robust layered control system for
a mobile robot, IEEE Journal on Robotics and Automa-
tion, vol. 2, no. 1, pp. 14–23.

[21] W. M. Spears and D. F. Gordon (2000), Evolving Finite-
State Machine Strategies for Protecting Resources, Pro-
ceedings of the International Symposium on Methodolo-
gies for Intelligent Systems, pp. 166–175.

[22] J. L. Fernandez-Marquez, G. Di Marzo Serugendo,
S. Montagna, M. Viroli, and J. L. Arcos (2013), Descrip-
tion and composition of bio-inspired design patterns: a
complete overview, Natural Computing, vol. 12, no. 1,
pp. 43–67.

[23] H. Dan and H. Elmqvist (2011), Cyber-physical systems
modeling and simulation with modelica, pp. 1–8.

[24] M. A. Al Faruque and F. Ahourai (2014), A model-based
design of cyber-physical energy systems, Proceedings
of the 19th Asia and South Pacific Design Automation
Conference, pp. 97–104.

[25] A. Canedo, M. A. Al Faruque, and J. H. Richter (2014),
Multi-disciplinary integrated design automation tool for
automotive cyber-physical systems, in Proceedings of

the Design, Automation and Test in Europe Conference
and Exhibition, pp. 1–2.

[26] J. D. McLurkin (2004), Stupid Robot Tricks: A Behavior-
Based Distributed Algorithm Library for Programming
Swarms of Robots, PhD thesis, Massachusetts Institute
of Technology.

[27] A. Matsumoto, H. Asama, Y. Ishida, K. Ozaki, and
I. Endo (1990), Communication in the autonomous and
decentralized robot system ACTRESS, Proceedings of
the IEEE International Workshop on Intelligent Robots
and Systems, Towards a New Frontier of Applications,
pp. 835–840.

[28] M. J. Huber and E. H. Durfee (1995), Deciding when
to commit to action during observation-based coordina-
tion, Proceedings of the 1st International Conference on
Multi-Agent Systems, pp. 163–170.

[29] R. Beckers, O. E. Holland, and J.-L. Deneubourg (1994),
From Local Actions To Global Tasks: Stigmergy and
Collective Robotics, Artificial life IV, pp. 181–189.

[30] T. Schmickl, R. Thenius, C. Moeslinger, G. Radspieler,
S. Kernbach, M. Szymanski, and K. Crailsheim (2009),
Get in touch: cooperative decision making based
on robot-to-robot collisions, Autonomous Agents and
Multi-Agent Systems, vol. 18, no. 1, pp. 133–155.

[31] M. Bodi, C. Möslinger, R. Thenius, and T. Schmickl
(2015), Beeclust used for exploration tasks in au-
tonomous underwater vehicles, IFAC-PapersOnLine,
vol. 48, no. 1, pp.819–824.

Ada User Jour na l Vo lume 40, Number 3, September 2019

Automate Your Ada Unit Testing

With VectorCAST/Ada

Vector Austria GmbH | www.vector.com

VectorCAST/Ada is an integrated software test solution that significantly reduces the time, effort, and
cost associated with testing Ada software components necessary for validating safety- and
mission-critical embedded systems.

> Complete test-harness construction for unit and
integration testing

> Test execution from GUI or scripts
> Code coverage analysis
> Regression Testing
> Code complexity calculation
> Automatic test creation based on decision paths

> User-defined tests for requirements-based
testing

> Test execution trace and playback to assist in
debugging

> Integrations with best of breed requirements
traceability tools

More information: www.vector.com/vectorcast

 179

Ada User Journal Volume 40, Number 3, September 2019

Experience in 40 Years of Teaching Ada
Jean-Pierre Rosen
Adalog, 2 rue du Dr Lombard, 92130 Issy-Les-Moulineaux, France. Email: rosen@adalog.fr

Abstract

In this era of newsgroups, forums, and MOOCs, is
there a place for traditional face-to-face training?
After years of teaching Ada, we present our
experience about what is easy and what requires
special emphasis in the various aspects of Ada
training. We conclude that “passing the message” is
what most requires human presence.

Keywords: Ada, training, software engineering.

Back in 1979, shortly after Green was selected by the DoD,
Ichbiah gave the first presentation of this brand new
language – preliminary Ada. I attended this presentation,
and since at that time I was a teacher in a French
engineering school, I immediately returned that
presentation to the students. I never ceased teaching Ada
ever since then. This paper presents my experience after 40
years of teaching Ada.

1 The students

My experience relates to a quite specialized sample of
students: they were all engineers already working in a
company, mostly with some years of experience, some of
them freshly out of school. Most of them were software
engineers, although I received some QA people or project
managers sometimes.

None of them were complete beginners as far as
programming was concerned. Actually, the knowledge of at
least one programming language is a prerequisite to my
course. This implies that I assumed that the basics of
programming were known (although I had surprises at
times). This also meant that quite often, students may have
had bad habits that needed to be fixed...

2 Teaching the language

The common language basis known to all students is C,
plus varying knowledge of other languages from the C-
family (C++, Java, C#…).

The previous knowledge of students evolved over time.
Some years ago, many students had used Pascal or Pascal-
like languages (at least as a first introductory language),
making the syntax look more familiar. More recently, a
significant number of students had exposure to VHDL,
making the language look even more familiar. Python is
often mentioned, but not as frequently as one would expect
given the current claimed popularity of this language.

Few students have difficulties with the syntax. Moreover,
the syntax differences between Ada and the languages
students know are easily overcome, given the excellent

error messages provided by the Gnat compiler for syntax
errors.

When showing the syntax of the basic statements, it is
important to stress what’s special in Ada (completeness of
case statements, safety of the for loop) and to show that
these peculiarities are here on purpose, to serve goals of
software engineering. It is also useful to take this
opportunity to stress the uniform and consistent design of
the language.

Since most students have not been exposed to any block
structured language, the notion of being able to declare any
construct at any place (like a subprogram or a package
within a subprogram) is not easily grasped. It is necessary
to explain in great details the nesting of program units,
visibility rules, hiding...

Almost all students (except the senior ones) have been
trained to object oriented programming with C++ or Java,
although none of them really understand where the terms
“class” or “method” come from. A bit of methodological
introduction, showing the principles of functional vs. object
oriented programming is useful, and helps justify the
strategy adopted by Ada, since Ada’s OOP model is quite
original, and, to be honest, not straightforward. Newcomers
are surprised that “class” is not a reserved word! With
appropriate explanations, it is reasonably easy to explain
the difference between a specific type and a class-wide
type.

Exceptions are no more a new concept, and many students
had (some) exposure to concurrency.

Note that the teacher should not hesitate to cheat a little bit
in places, to provide an usable and easy to understand
model, even if it is not the exact truth from a language
lawyer point of view. For example, I state (tongue in cheek)
that the resolution of integer literals is just a kind of
overloading resolution (to avoid having to talk about
universal integers), or that a package specification cannot
contain any form of body (it can, if it contains a generic
instantiation).

It is of course important to make comparison with other
languages, not to tell that other languages are bad, but
rather that they correspond to different requirements about
the very purpose of a programming language. C, for
example, was intended to be a “portable assembly
language” (and it is very good at that); Ada is intended to
keep the programmer away from the machine. I often stress
this by saying “C is the best language to program a

180 Experience in 40 Years of Teaching Ada

Volume 40, Number 3, September 2019 Ada User Journal

computer; Ada is the best language to develop a software
application”1.

3 Teaching how to use the language

A good Ada course should not teach how to program with
Ada, but how to program in Ada.

At first glance, Ada looks like most other programming
languages, and it is easy to use it just like any other
language: using only predefined types, using packages just
for separate compilation (without any consideration for
information hiding), ignoring generics altogether, etc.2 The
first challenge is to have the students understand that the
Ada way of thinking is radically different from other
languages.

For example, the need for information hiding is not obvious
to many. This has to be explained first, then packages come
as the tool to enforce information hiding.

The habit of writing specifications without even thinking
about the implementation is far from obvious, and must be
enforced in the exercises. Students tend to think about
implementation first (“how can I do this?”), then write the
specification as a way of exporting what they have written.
It must be explained that the specification expresses client
requirements, and that the body is the implementation of
the requirements.

Ada has a rich set of data structures, some with no
equivalent in other languages (discriminated types, f.e.).
The importance of an appropriate choice of data structures
has to be stressed, and more generally the need to design
types and data structures the same way as algorithms.
Although students have no issue with understanding the
possibility of defining one’s own types, they have
difficulties to put it into practice. The natural trend of many
is to do everything with types Integer and Boolean only.

Finally, it is important to show that the compiler is of great
help during the whole coding phase: “the compiler is your
friend”. Students tend to write everything, and compile
only when the code is complete, producing a discouraging
flow of error messages. Explain that the Ada compiler is a
helpful companion, willing to tell the errors as early as
possible, and that it saves a lot of time to compile often,
like immediately after each subprogram is written, even if a
lot of code is still missing.

4 Typical student errors (and how to
react)

There is a small number of errors that students will make
almost systematically in the course of exercises. These are
good opportunities to hint on important points of the
language.

1 Please don’t quote me on the first part of this statement without the
second part !

2 I have seen projects doing this; they didn’t get much gain from using
Ada, and spent a huge amount of time fighting the compiler.

Using enumerated types is not natural for many students:
for example, in an exercise that involves a state machine,
students tend to declare a Boolean variable for each state
rather than a Current_State variable of an appropriate
enumerated type.

Hint: ask the student what happens if two states are True at
the same time (if they assume that it does not happen, ask if
they can prove it); show that this cannot happen with an
enumerated type.

When faced with a compilation error, students tend to try to
make the error disappear, instead of searching for their own
design error. Typically, if a student writes:

D : Duration ;
begin
 D:= 1;

He will get an error message:

Expected type Standard.Duration, found an integer type

Which he will try to fix by writing:

 D:= Duration (1);

This shows that the student thought “Oh, the compiler
wants a Duration, let’s convert this to Duration”, rather
than thinking that Duration is a real type, and therefore that
the correct fix is:

 D:= 1.0;

Hint: Explain why this kind of reaction is wrong: when
something doesn’t compile, it is important to understand
the problem, not to find a workaround such that the
compiler accepts it. In the end, the student should come to
think:

“Thank you, gentle compiler, for pointing out my
design errors”!3

Error messages sometimes push the students in the wrong
direction. For example, students who want to declare an
integer type think that the word “integer” must appear in
the declaration and write:

type My_Int is Integer range 1..10;

Unfortunately, the error message points after the is and
says “missing new”. Students blindly follow the advice and
write:

type My_Int is new Integer range 1..10;

This results in a type derived from Integer, while the
correct fix would have been to delete the word Integer:

type My_Int is range 1..10;

Hint: explain that what they wrote makes their type
dependent on the definition of Integer, while without “new

3 Ada is the only language where users are happy to have compilation
errors!

J. P. Rosen 181

Ada User Journal Volume 40, Number 3, September 2019

Integer” the compiler would choose the most appropriate
integer type.

Simple tests are often written as this:

if Is_Present = True then ...

This may seem just like a slightly redundant formulation
(that will be optimized away by the compiler anyway), but
it actually reflects a fundamental problem: the student
thought “if the variable Is_Present contains the value
True”, not “if my data is present”.

Hint: use this kind of error to stress the need for higher
level thinking: the programmer should change his mind
from “programming a computer” to “expressing a solution
to a problem”.

5 Hard points

5.1 Vocabulary
The compiler has a special lingo. The Ada standard has a
precise definition of every technical term, and the compiler
is careful to use the appropriate vocabulary. However,
terms may not be obvious to the casual user. For example, a
common error message is “invalid use of subtype mark in
expression or call”; this puzzles the student (subtype mark?
What’s this?) while it simply means that a type name has
been used in place of a variable name – a very common
confusion.

Some Ada terms have a different meaning than in other
languages. For example, in Ada a subprogram is either a
procedure or a function, while in Fortran, a procedure is
either a subroutine or a function. An object is either a
constant, a variable, or a formal parameter… and is not
related to object oriented programming. It is up to the
teacher to stress these differences to avoid confusion.

5.2 Unlearning
It is a natural move to understand new features of a
language by analogy with the similar features of known
languages. Unfortunately, this leads to misunderstandings
when features looks similar, but are in fact quite different.
Some concepts (like tasking, or object orientation) are even
easier to teach to people without corresponding experience,
because they don’t have to unlearn the similar looking
feature of the other language. It is part of the teacher’s skill
to feel when a student is biased in his understanding, and to
insist on the differences between the languages.

Some habits are hard to lose, like putting useless
parentheses around the condition in an if statement! Some
students (especially those who know mainly Java or other
fully dynamic language) have a hard time understanding
that an object can exist simply by being declared, without
calling any new statement.

5.4 Forget Integer and Float!
The art of Ada programming is in defining appropriate
(high level) types. Although the course stresses the need to
define appropriate types modeling the problem, students
tend to return to the types Integer (for integer values) or
Float (if there is a point in the numbers!), like if these types

were actually the mathematical sets Z and R, but they are
not! During exercises, the teacher should really chase these
and make the students think of the very nature of the
entities that appear in the program. If two “things” are
different in real life, they must not have the same type. For
real types, show that other languages are very poor, but that
Ada offers a range of possibilities. Take the example of
monetary computations, where the use of floating point
types is forbidden by law!

5.3 Packages and modularity
When given an exercise that involves providing a package,
students tend to hurry into writing the body of the package.
One of the benefits of Ada is that you can specify a
package, then use the specification (therefore ensuring that
the specification meets the needs of the user of the
package), and only then turn to the body. The teacher must
therefore look after the students to make sure that they
always follow these steps:

1. Write the specification of the package, and compile it
to check that it is correct Ada.

2. Write the main/test program that uses the package, and
compile it to check that the specification implements
the requirements.

3. Only then, generate the body skeleton (Gnatstub is
instrumental for that), fill it, and try the program.

Things to look after in this process:

• Make sure that bodies are not written too early

• Make sure that once the specification is validated (i.e.
the main program is compiled against the package
specification), the specification is not changed (except
possibly for the private part). Students tend to put
declarations in the specification that belong to the
body. Explain that validating the specification is like
signing a contract, you are not allowed to change a
contract after it has been signed!

5.4 Concurrency
Sudents have varying experience with multi-tasking. Those
with some experience generally wrote programs at quite a
low level, using pthreads, condition variables, interrupt
handlers… The concept of logically independent and
concurrent tasks is of a higher level, and students have
difficulties to mentally figure that several frames of control
execute at the same time. This needs a special mental
process, analogous to understanding recursivity.
Surprisingly enough, the concept of a rendezvous is not
easily understood by those with previous experience, who
tend to view the accept statement like a kind of interrupt
handler that is activated when a user task needs it rather
than as a statement executed according to the path of the
owning task. Related to this, some have difficulties
understanding that requeue terminates the current
rendezvous or protected call.

182 Experience in 40 Years of Teaching Ada

Volume 40, Number 3, September 2019 Ada User Journal

6 Exercises

Computers are provided for the exercises, and students are
allowed to bring their own laptops if they prefer. However,
I always advise them to pair with a colleague for the hands-
on sessions. Working in pairs triggers discussions to find
the solution to a problem, avoids being blocked by a small
error, and in the end, allows the participants to go farther in
the exercise and make it more profitable.

Appropriate exercises are very important. Here are some
qualities of a good exercise.

• An exercise must be interesting, in order for the
student to be motivated in seeing the result. “Hello
world” exercises are a waste of time.

• An exercise must have a first step that everybody
should normally complete (to avoid frustration), and
further developments for those who achieve the first
step quickly, in order to exercise more advanced
features.

• An exercise should be targeted to demonstrate a
particular feature of the language. For example, I’ve
seen no student really understand generics from the
slides alone, but after a good exercise, they really grasp
how they work.

• An exercise should include a number of traps for
students to learn and think about how to solve the
problem.4

Following these principles, the course offers six exercises:

 A first exercise to get started. It shows the general
features of the language, requiring the writing of a
package and the definition of some types. The exercise
can be solved without using the type Integer; it is a
good opportunity to watch the students and chase uses
of Integer instead of user defined types!.

 An exercise on generics, showing that once a generic
works in one (simple) case, it works in all cases.

 An exercise on access types (a simple linked list),
showing it is possible to manipulate pointers without
any core dump! It also shows that implicit dereference,
which looks weird when first explained, makes a very
natural notation.

 An exercise on OOP and tagged types. The course of
the exercise is such that a procedure that operates on a
class-wide type is written before the concrete classes
that belong to it. This shows that a subprogram can
operate on objects whose type has not yet been written,
emphasizing the flexibility of the approach5.

4 Some students are worried that they have difficulties in doing the
exercise. I always respond: “If I give you an exercise and you do it without
any problem, it only shows that the exercise was not well chosen”.

5 At the cost of compile-time safety, of course.

 An exercise on tasking with rendezvous, where many
have difficulties understanding that the accept
statement is executed sequentially, and not as some
kind of call-back.

 An exercise on tasking with protected types and
requeues.

In addition, the course includes a short presentation of
annex E (distributed systems) with a demo where various
clients print to a shared or duplicated print server. Those
who had no previous experience with distributed systems
find the feature very nice, but those who had to tackle with
this kind of development are absolutely stunned by the ease
of using and reconfiguring the system!

7 (Other) lessons learned

The real new thing that most students discover from Ada
training is the art of modeling the problem, of thinking in
problem terms and not in terms of machine representation.
In the end, most of the difficulties are not with the
language, but with the lack of knowledge in basic
principles software engineering. An essential part of
teaching Ada is not the technical details, but the message of
software engineering: that programming should move to
higher levels of abstraction, that specifications and
implementations should be kept separated, and that
defining proper types needs more thinking than writing
code.

If you explain these principles, and show how Ada was
designed to support them, students are easily convinced on
the benefits of using Ada. A common question at the end of
the course is: “with all these benefits, how comes that Ada
is not more widely used?” Part of the answer is that Ada is
not easy to approach in a casual manner: it has to be taught,
the benefits explained; it is an industrial tool, and using an
industrial tool requires training. Nobody would use an
excavator without training, while anybody can pick up a
shovel. Of course, it’s less powerful if you have a big
trench to dig…

That’s why there is still a future for face-to-face training.
All the technological details can be learned with internet
tools, but passing the spirit of Ada requires discussion,
supervised exercises, and a teacher!

The role of the teacher is especially important for exercises,
because it is there, that some notions (generics,
rendezvous…) are really understood, and especially
through errors and the interaction with the teacher that
results. Let’s conclude with a proverb that everyone
involved in training should keep in golden letters on his
desk:

“I hear and I forget,
I see and I remember,
I do and I understand”

 183

Ada User Journal Volume 40, Number 3, September 2019

Ada-Europe 2019 – Newcomer Experience
Maciej Gajdzica
Solwit SA, Azymutalna 11 80-298 Gdańsk; email: mgajdzica@gmail.com

Abstract

Ada-Europe holds an annual conference on reliable
software technologies every year in a different city.
Luckily this year it took place in Warsaw, so I was
able to attend. It was my first Ada related event and I
will share with you my thoughts about the conference
and the Ada community as a whole, from the
perspective of a newcomer.

Keywords: conference, Ada-Europe, Warsaw.

1 Venue

The main part of the conference containing lectures was
held on 12-13 June 2019. A day earlier, on the 11th of June,
two workshops took place: “Introduction to Ada” and
“Controlling IO devices with Ada”. Also, a day after the
conference, on the 14th of June, the WG9 had a meeting
about the upcoming standard Ada2020, and a workshop on
Cyber-Physical Systems was held. I participated only in the
main conference.

The venue was really interesting for technical people, as the
conference took place in the Polish Institute of Aviation.
From the hallway window we could see an aerodynamic
tunnel and the lunchroom was decorated with old jet
engines with corresponding descriptions. Did you know
that a jet engine burns about 1500 liters of fuel per hour?

2 Community

I attended quite a few programming conferences in Poland
and Ada-Europe is much different. My first observation
was that the average age of participants was higher than on
typical Polish conferences. Many people have tens of years
of experience in safety-critical software. Therefore,
conversations focused mostly on solid software engineering
principles, not on newest trends. Also, Ada-Europe is a
rather small conference – there were about 100 participants.
But everyone who arrived here was really enthusiastic
about Ada and many participants devoted their whole
career to promoting it. Unfortunately, Ada didn't receive
the popularity it deserves during all these years and, for
some reason, it doesn't attract many new adepts, even
though Rust recently proved that there is room for
languages focusing on safety.

During coffee breaks I also had some time to check stands
where conference partners presented their products. Most
of Ada use cases presented were for military and avionics.
That leads to the conclusion that even though Ada is not
that popular, it is still unlikely to be totally abandoned.
Especially because no other language, even the mentioned
earlier Rust, will be able to provide this level of compile

time checks. This statement was confirmed by some people
that I talked to, who use Ada in commercial projects. They
also claimed that they couldn't recruit Ada developers.
They just recruit developers who are willing to learn Ada.
But as a company they still benefit from this. The
viewpoint of those trained developers is also really
interesting. Almost every new recruited developer follows
the same pattern of feelings about the language. At first,
they are annoyed with compilation errors. It takes about 5-6
weeks to understand that by failing compilation early they
save a lot of time on debugging hard to spot bugs later.

The Ada community includes also a strong representation
of universities and researchers. Ada is used in various
studies and areas of particular interest are scheduling,
concurrency and real-time systems. The conference
provides an opportunity to show results of their work.

3 Talks

For two days there were a lot of interesting talks. I picked a
few that I enjoyed the most to comment here.

3.1 Contract-based Design and Verification Using
SPARK 2014
This presentation caught my attention from the very
beginning, after I heard something like "This presentation
is based on my experience from a military project which is
so secret that I can't say a word about it".

The author compared Test Driven Development (TDD)
with Design By Contract (DBC). To keep military secrets, a
boiling water project example was used. First requirements
were formulated and a generic implementation using Model
Based Design was created in the SCADE tool.

When using TDD one must create tests based on
requirements and add implementations that pass these tests.
To satisfy normative regulations regarding traceability,
specific requirements must be mapped to tests and code and
review must be done manually.

In the DBC approach, contracts were generated from the
model. SPARK was very convenient here as it allowed to
validate contracts during compilation. In most languages,
asserts are checked at runtime so tests executing all
possible paths and validating every assert are needed. When
using SPARK, unfulfilled contracts will fail compilation
and force developer to address this issue immediately.
SPARK contracts were generated from SCADE.

As the tool was certified, manual verification for
traceability could be omitted, which saved a lot of time. Of
course, full code coverage is still required but when certain
errors are now caught during compilation, the whole
process requires less effort.

184 Ada-Europe 2019 – Newcomer Exper ience

Volume 40, Number 3, September 2019 Ada User Journal

One downside is that automatically generated contracts are
unreadable for a mere mortal. Conditional logic placed in
contracts may be also duplicated later in implementation
code. So, this solution also has some disadvantages.

3.2 Verification and Validation of Launcher
Flight Software
This one was about work from the European Space Agency
on the Ariane 6 rocket. Once again Model Based Design
(MBD) and State Machines were used. But this time code
was generated from SysML. In the Ariane 6 project there
are 4 types of code:

 Generic libraries (e.g. math)
 Code autogenerated from SysML
 Algorithmic code written by programmers
 Other code written by programmers

Code is written in Ada2012. Generators from SysML
models are not certified, so results must be validated
manually for traceability.

Manual verification was a recurring topic during the whole
conference. Many times, this approach is chosen despite it
is tedious, time consuming and error prone. The alternative
is to certify a custom generator, which is not worth the
effort, or using a customizable commercial tool, which is
expensive and doesn't guarantee that it will solve project
specific issues.

But back to Ariane 6, MBD allows them to easily use code
in multiple environments, including in production, test and
various simulations. They have also tools ensuring that
simulations generate data similar to tests on real hardware.

3.3 Experience from 40 Years of Teaching Ada
Last talk of the first day was given by Jean-Pierre Rosen.
He conducted first trainings even before the language was
called Ada. It was codenamed "Green" back then, as one of
four proposals for the US military. The talk was light and
funny. It was a great choice to place it at the end of a day
when everyone is tired, and a complicated technical topic
would be hard to follow.

Jean-Pierre had some great insights about how people feel
when they learn. I also started recently and know most of
these from my own experience. At first there is resistance,
since Ada requires a different mindset from all the
languages I learned before. Many habits from these
languages are more like a burden than a help.

The most frustrating thing at first is a nitpicky compiler.
We are used to approaches in which compilation is only a
first step, followed by a step of fixing runtime errors. We
start to value Ada when we realize that after some initial
pain no second step is needed. Therefore, the best approach
is to develop in small iterations of write-compile-fix.

Also, verbose syntax is something different from other
languages, not to mention some unique constructs like
Discriminants.

The conclusion was that nowadays the art of solid Software
Engineering is vanishing. We focus on quick results instead

of correctness. Therefore, we have Agile, Rapid
Development and short time to market, resulting in
maintenance hell later.

3.4 A 2020 View of Ada
Second day keynote speaker, Tucker Taft, gave us a sneak
peek of the upcoming Ada2020 standard. The main
emphasis was put on parallel programming, which was also
a topic of the first day keynote on the OpenMP standard.

Another big change will be the addition of some functional
programming elements. It may sound silly, but Ada will
show some similarities to Python. For example, we will
have list comprehension.

It was a great opportunity to learn how the Ada working
group proceeds and how new features evolve before they
are accepted.

3.5 RCLAda or Bringing Ada to the Robotic
Operating System
This was one of the last talks of the second day. I worked
on one side project in ROS, so I liked the idea of using Ada
in mobile robotics. Of course, this use case is far from the
highly reliable safety-critical systems that were focused on
almost every presentation at Ada-Europe. But this project
could be an opportunity to promote Ada among students.
You can follow progress of this project on GitHub [1].

4 Sponsor Presentations

I also mention talks given by sponsor representatives. My
previous experience with this kind of presentations was
quite bad. They are usually non-technical, going into details
of products that I don't use and often biased. But this time I
was surprised. They provided general best practices to
handle common developer problems, showed interesting
statistics and shared feedback from clients.

The one I enjoyed the most was from VectorCast. Their
flagship product is intended to speed up unit tests, but I’m
not a fan of it to say the least. Nonetheless, their
presentation was top notch. It presented common pitfalls
when writing tests and contained many words of wisdom.
My favourite one was that most developers write tests
based on existing code instead of requirements. It's like a
university teacher checking the exam based on student
answers instead of correct answers.

5 Summary

I really enjoyed Ada-Europe. Discussed topics couldn't be
found on any other IT conference in Poland. It's not only
because Ada is a niche language, but more because
problems that arise when trying to assure the highest safety
and reliability levels are unfortunately not a big concern in
most non-safety related IT projects. The Ada-Europe
conference could be an eye opener for these people and,
even if they don't work on such critical systems daily, they
would realize the importance of software quality.

References
[1] https://github.com/ada-ros/rclada.

 185

Ada User Journal Volume 40, Number 3, September 2019

Join Ada-Europe!

Become a member of Ada-Europe and support Ada-
related activities and the future development of the
Ada programming language.

Membership benefits include receiving the quarterly
Ada User Journal and a substantial discount when
registering for the annual Ada-Europe conference.

To apply for membership, visit our web page at

http://www.ada-europe.org/join

186

Volume 40, Number 3, September 2019 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	MAIN.pdf
	
	
	
	
	

	
	
	

	
	
	

	
	

